Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы вопросов по физеке.docx
Скачиваний:
14
Добавлен:
23.09.2019
Размер:
1.01 Mб
Скачать

33) Электропроводность полупроводников

При температуре, близкой к абсолютному нулю, полупроводник ведет себя как абсолютный непроводник, потому что в нем нет свободных электронов. Если повышения температуры нет, связь валентных электронов с атомными ядрами ослабевает и некоторые из них вследствие теплового движения могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится свободным (на рис. 1, б - черная точка), а там, где он был до этого, образуется пустое место. Это пустое место в межатомной связи полупроводника условно называют дыркой (на рис. 1 ,б - разорвавшаяся линия электрона). Чем выше температура полупроводника, тем больше в нем появляется свободных электронов и дырок. Таким образом, образование в массе полупроводника дырки связано с уходом из оболочки атома валентного электрона, а возникновение дырки соответствует появлению положительного электрического заряда, равного отрицательному заряду электрона.

Рис 1. Схема взаимосвязи атомов в кристале полупроводника (а) и упрощенная схема его структуры (б).

34) p-n-Перехо́д -, или электронно-дырочный переход — область пространства на стыке двухполупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-Переход является основой для полупроводниковых диодовтриодов и других электронных элементов с нелинейной вольт-амперной характеристикой.

Энергетическая диаграмма p-n-переход а. a) Состояние равновесия b) При приложенном прямом напряжении c) При приложенном обратном напряжении.

35) Прохождение тока через электронно-дырочный переход:

Рис.3 - Прохождение тока через электронно-дырочный переход

36) Транзи́стор (англ. transistor), полупроводниковый триод — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов.

Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.

Полевой транзистор с изолированным затвором – транзистор, затвор которого электрически изолирован от проводящего канала полупроводника слоем диэлектрика. Благодаря этому, у транзистора очень высокое входное сопротивление (у некоторых моделей оно достигает 1017 Ом).

37)

38) Эффект Мейснера (в некоторых источниках — эффект Мейсснера) — полное вытеснение магнитного поля из объёма проводника при переходе в сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками Мейснером и Оксенфельдом.

Физическое объяснение

При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник отличается от идеального проводника, у которого при падении сопротивления до нуля индукция магнитного поля в объёме должна сохраняться без изменения.

Отсутствие магнитного поля в объёме проводника позволяет заключить из общих законов магнитного поля, что в нём существует только поверхностный ток. Он физически реален и поэтому занимает некоторый тонкий слой вблизи поверхности. Магнитное поле тока уничтожает внутри сверхпроводника внешнее магнитное поле. В этом отношении сверхпроводник ведёт себя формально как идеальный диамагнетик. Однако он не является диамагнетиком, так как внутри него намагниченность равна нулю.

Эффект Мейсснера не может быть объяснён только бесконечной проводимостью. Впервые его природу объяснили братья Фриц и Хайнц Лондон c помощью уравнения Лондонов. Они показали, что в сверхпроводник поле проникает на фиксированную глубину от поверхности — лондоновскую глубину проникновения магнитного поля  . Для металлов  мкм.

39) Сверхпроводник — материал, который при определенных условиях приобретает сверхпроводящие свойства. Это достигается понижением температуры до Tc, при которойсопротивление материала понижается до нуля. В настоящее время проводятся исследования в области сверхпроводимости для того, чтобы повысить температуру перехода в сверхпроводящее состояние до комнатной.

Сверхпроводники первого, второго и третьего рода. Сверхпроводники первого рода - это чистые вещества, у которых наблюдается полный эффект Мейсснера (поля меньшие 105 А/м). Сверхпроводники второго рода - это вещества, в которых эффект Мейсснера проявляется частично (поля большие, чем 107 - 108 А/м).

Магнитное поле в них распределено в виде отдельных нитей, а сопротивление равно нулю, как и у сверхпроводников 1 - го рода. К сверхпроводникам второго рода относятся в основном сплавы (из чистых металлов только ниобий, ванадий и технеций). Сверхпроводники третьего рода - это "жесткие" сверхпроводники в основном сплавы и химические соединения сверхпроводников 2 - го рода, содержащие дефекты структуры, служащие местами закрепления вихрей (центров пиннинга). 

Рис. 1. Зависимость магнитной индукции (о) и намагниченности (С) для длинного сверхпроводящего цилиндра от напряжённости продольного магнитного поля. Сплошная линия - сверхпроводник 2-го рода, пунктирная - сверхпроводник 1-го рода

Рис. 2. Фазовая диаграмма для сверхпроводника 2-го рода в форме длинного цилиндра в продольном магнитном поле: 1 - нормальное состояние; 2 - поверхностная сверхпроводимость; 3 - смешанное состояние; 4 - полный эффект Мейснера.

40) КВАНТОВАНИЕ МАГНИТНОГО ПОТОКА - дискретность значений магнитного потока Ф, проходящего через неодносвязный сверхпроводник (напр., сверхпроводящее кольцо) [1]. Магн. поток имеет значения, кратные кванту потока Ф0=h/2е=2,0678506.10-15 Вб. Экспериментально К. м. п. было обнаружено в 1961 [2, 3]. К. м. п. принадлежит к той же группе макроскопич. квантовых эффектов в сверхпроводниках, что и Джозефсона эффект.

Квантование магнитного потока, макроскопическое квантовое явление, состоящее в том, что магнитный поток через кольцо из сверхпроводника с током может принимать только дискретные значения (см. Сверхпроводимость).

Минимальное значение потока (квант потока) Ф0 Ф0=h/2е=2,0678506.10-15 Вб.  где с — скорость света, h — Планка постоянная, е — заряд электрона. Магнитный поток в сверхпроводнике может быть равен только целому числу квантов потока. 

41) Эффект Джозефсона — явление протекания сверхпроводящего тока через тонкий слой диэлектрика, разделяющий два сверхпроводника. Такой ток называют джозефсоновским током, а такое соединение сверхпроводников — джозефсоновским контактом. В первоначальной работе Джозефсона предполагалось, что толщина диэлектрического слоя много меньше длины сверхпроводящей когерентности, но последующие исследования показали, что эффект сохраняется и на гораздо больших толщинах.

Из ф-лы (1) видно,что джозефсоновский ток не может превышать IС.

42) Высокотемпературные сверхпроводники (Высокие Tc) — семейство материалов (сверхпроводящих керамик) с общей структурной особенностью, относительно хорошо разделёнными медно-кислородными плоскостями. Их также называют сверхпроводниками на основе купратов. Температура сверхпроводящего перехода, которая может быть достигнута в некоторых составах в этом семействе, является самой высокой среди всех известных сверхпроводников.

43)

44)

45) Диамагнетизм — один из видов магнетизма, который проявляется в намагничивании вещества навстречу направлению действующего на него внешнего поля.

Диамагне́тики — вещества, намагничивающиеся против направления внешнего магнитного поля. В отсутствие внешнего магнитного поля диамагнетики немагнитны. Под действием внешнего магнитного поля каждый атом диамагнетика приобретает магнитный момент I (а каждый моль вещества — суммарный магнитный момент), пропорциональный магнитной индукции H и направленный навстречу полю. Поэтому магнитная восприимчивость   = I/H у диамагнетиков всегда отрицательна. По абсолютной величине диамагнитная восприимчивость   мала и слабо зависит как от напряжённости магнитного поля, так и от температуры.

Для системы изолированных (несвязанных) атомов или ионов cd (в расчете на 1 см3) определяется формулой Ланжевена:

где N - число атомов или ионов в 1 см3e - заряд электрона, m0- масса покоя электрона, с - скорость света в вакууме,  -средний квадрат расстояния i-го электрона от атомного ядра, k - число электронов в атоме или ионе. Сумму  можно заменить на   где р- число электронов внешней оболочки (дающих наибольший вклад в эту сумму),   -средний квадрат ее радиуса. По известным величинам cd и р можно оценивать размеры атомов или ионов.

46) Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля. Парамагнетики относятся к слабомагнитным веществам, магнитная проницаемость незначительно отличается от единицы  .

ПАРАМАГНЕТИЗМ (от пара... и магнетизм) - свойство вещества намагничиваться во внешнем магнитном поле в направлении поля. Парамагнетизмом обладают вещества (парамагнетики), атомы (ионы) которых имеют магнитный момент, но в которых отсутствует самопроизвольная намагниченность. При намагничивании атомные магнитные моменты выстраиваются по направлению поля (в отсутствие поля они дезориентированы тепловым движением).

Закон Кюри — физический закон, описывает магнитную восприимчивость парамагнетиков, которая при постоянной температуре для этого вида материалов приблизительно прямо пропорциональна приложенному магнитному полюЗакон Кюри постулирует, что при изменении температуры и постоянном внешнем поле, степень намагниченности парамагнетиков обратно пропорциональна температуре:

где в единицах Международной системе единиц (СИ):   — получаемая намагниченность материала;   — магнитное поле, измеренное в Теслах;   — абсолютная температура вКельвинах  — постоянная Кюри данного материала. Это соотношение, полученное экспериментально П. Кюри, выполняется только при высоких температурах или слабых магнитных полях. В обратном случае — то есть при низких температурах или при сильных полях — намагниченность не подчиняется этому закону.

Конкуренция между упорядочивающим действием магнитного поля и разупорядочивающим действием теплового движения частиц вещества (атомов, ионов) приводит к следующей формуле для c парамагнетики (закон Кюри):

где m-величина магнитного момента атома, N -число парамагнитных атомов в 1 моле вещества, bkB-постоянная Больцмана, Т - абсолютная температура. При наличии некоторого взаимодействия между магнитными моментами и их взаимодействием с внутрикристаллическим полем c парамагнетики описывается формулой (закон Кюри-Вейса):

где q-константа Вейса, характеризующая влияние внутрикристаллического поля.

Идеальный парамагнетизм характеризуется восприимчивостью  , которая меняется обратно пропорционально температуре (закон Кюри)

 - константа Кюри.

В реальных твёрдых телах из-за наличия обменного взаимодействия между магнитными моментами ионов выполняется закон Кори-Вейсса:

 - константа, характеризующая межионное взаимодействие.

47) Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах).

Ферромагнетизм - магнитоупорядоченное состояние вещества, в котором большинство атомных магнитных моментов параллельны друг другу, так что вещество обладает самопроизвольной (спонтанной) намагниченностью.