Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_vopr_fiz_2012_3.docx
Скачиваний:
19
Добавлен:
22.09.2019
Размер:
175.45 Кб
Скачать
  1. Температура и ее измерение. Абсолютный нуль температуры. Термодинамическая шкала температур.

Температу́ра (от лат. temperatura — надлежащее смешение, нормальное состояние) — скалярная физическая величина, характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состояниитермодинамического равновесия.

В Международной системе единиц (СИ) термодинамическая температура входит в состав семи основных единиц и выражается в кельвинах. В состав производных величин СИ, имеющих специальное название, входит температура Цельсия, измеряемая в градусах Цельсия[1]. На практике часто применяют градусы Цельсия из-за исторической привязки к важным характеристикам воды — температуре таяния льда (0 °C) и температуре кипения (100 °C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном

Абсолю́тный нуль температу́ры (реже — абсолютный ноль температуры) — минимальный предел температуры, которую может иметь физическое тело. Абсолютный нуль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. В 1954 X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу с одной реперной точкой — тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °C, так что по шкалеЦельсия абсолютному нулю соответствует температура −273,15 °C [1].

В рамках применимости термодинамики абсолютный нуль на практике недостижим. Его существование и положение на температурной шкале следует из экстраполяции наблюдаемых физических явлений, при этом такая экстраполяция показывает, что при абсолютном нуле энергия теплового движения молекул и атомов вещества должна быть равна нулю, то есть хаотическое движение частиц прекращается, и они образуют упорядоченную структуру, занимая чёткое положение в узлах кристаллической решётки (жидкий гелийсоставляет исключение)

ТЕРМОДИНАМИЧЕСКАЯ ТЕМПЕРАТУРНАЯ шкала(Кельвина шкала) - абсолютная шкала температур, не зависящая от свойств термометрического вещества (началоотсчета - абсолютный нуль температуры). Построение термодинамической температурной шкалы основано на втором начале термодинамики и, в частности, на независимости кпд Карно цикла от природы рабочего тела.Единица термодинамической температуры - кельвин (К) - определяется как 1/273,16 часть термодинамической температуры тройной точки воды.

  1. Электрический ток в полупроводниках.

По значению удельного электрического сопротивления полупроводникизанимают промежуточное место между хорошими проводниками и диэлектриками. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры. Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает (см. рис. 4.12.4). У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами (рис. 4.13.1).

Билет №15

  1. Газовые законы. Уравнение состояния идеального газа. Молярная газовая постоянная.

Уравнение состояния идеального газа (иногда уравнениеКлапейрона или уравнение Менделеева  Клапейрона) — формула, устанавливающая зависимость между давлением,молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

где  — давление,  — молярный объём,  — универсальная газовая постоянная  — абсолютная температура,К.

  •    2. Молярная газовая постоянная. Для одного моля любого газа при нормальных условиях имеем:        p = 1 атм = 1,013·105 Па,        V = 22,4 л = 0,0224 м3,        t = 0°C или T = 273 К. Вычислим произведение давления на объем, деленное на температуру:                  Полученное значение, отнесенное к одному молю, называется молярной газовой постоянной:          Установим ее связь с другими константами.         Запишем уравнение Клапейрона:  Для одного моля вещества количество молекул равно числу Авогадро, а объем, занимаемый газом при нормальных условиях, равен молярному объему, тогда можно записать:  Но в левой части стоит величина, равная молярной газовой постоянной, поэтому:   

  1. Электрическая проводимость полупроводников. Полупроводниковые приборы.

Полупроводники — это вещества, удельное сопротивление которых убывает с повышением температуры, наличием примесей, изменением освещенности. По этим свойствам они разительно отличаются от металлов. Обычно к полупроводникам относятся кристаллы, в которых для освобождения электрона требуется энергия не более 1,5—2 эВ. Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью. 

При температуре, близкой к абсолютному нулю, полупроводник ведет себя как абсолютный непроводник, потому что в нем нет свободных электронов. Если повышения температуры нет, связь валентных электронов с атомными ядрами ослабевает и некоторые из них вследствие теплового движения могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится свободным (на рис. 1, б - черная точка), а там, где он был до этого, образуется пустое место. Это пустое место в межатомной связи полупроводника условно называют дыркой (на рис. 1 ,б - разорвавшаяся линия электрона). Чем выше температура полупроводника, тем больше в нем появляется свободных электронов и дырок. Таким образом, образование в массе полупроводника дырки связано с уходом из оболочки атома валентного электрона, а возникновение дырки соответствует появлению положительного электрического заряда, равного отрицательному заряду электрона.

Билет №16

  1. Температура – мера средней кинетической энергии хаотического движения молекул.

  1. Магнитное поле, особый вид материи.

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающиемагнитным моментом, независимо от состояния их движения[1], магнитная составляющая электромагнитного поля[2]

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Магнитное поле можно назвать особым видом материи[7], посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающимимагнитным моментом.

Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей.

Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности, свет и все другие электромагнитные волны.

Билет №17

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]