Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Информационные сети. билеты.docx
Скачиваний:
0
Добавлен:
22.09.2019
Размер:
93.65 Кб
Скачать

22. Коммутаторы локальных сетей

Switch (Коммутатор) - более интеллектуальное, чем концентратор устройство, где есть свой процессор, внутренняя шина и буферная память. Если концентратор просто передает пакеты от одного порта ко всем остальным, Switch анализирует Mac адреса, откуда и куда отправлен пакет информации и соединяет только эти компьютеры, в то время как остальные каналы остаются свободными. Это позволяет намного увеличить производительность сети, так как уменьшает количество паразитного трафика и обеспечивает большую фактическую скорость передачи данных, особенно в сетях с большим количеством пользователей.

Коммутатор хранит в памяти таблицу коммутации (хранящуюся в ассоциативной памяти), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры (фреймы) и, определив MAC-адрес хоста-отправителя, заносит его в таблицу на некоторое время. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя не ассоциирован с каким-либо портом коммутатора, то кадр будет отправлен на все порты, за исключением того порта, с которого он был получен. Со временем коммутатор строит таблицу для всех активных MAC-адресов, в результате трафик локализуется. Стоит отметить малую латентность (задержку) и высокую скорость пересылки на каждом порту интерфейса.

Существует три способа коммутации. Каждый из них — это комбинация таких параметров, как время ожидания и надёжность передачи.

  1. С промежуточным хранением (Store and Forward). Коммутатор читает всю информацию в кадре, проверяет его на отсутствие ошибок, выбирает порт коммутации и после этого посылает в него кадр.

  2. Сквозной (cut-through). Коммутатор считывает в кадре только адрес назначения и после выполняет коммутацию. Этот режим уменьшает задержки при передаче, но в нём нет метода обнаружения ошибок.

  3. Бесфрагментный (fragment-free) или гибридный. Этот режим является модификацией сквозного режима. Передача осуществляется после фильтрации фрагментов коллизий (кадры размером 64 байта обрабатываются по технологии store-and-forward, остальные по технологии cut-through).

Задержка, связанная с «принятием коммутатором решения», добавляется к времени, которое требуется кадру для входа на порт коммутатора и выхода с него, и вместе с ним определяет общую задержку коммутатора.

23. Принципы маршрутизации

Таблица маршрутизации, которая находится в маршрутизаторах, содержит сетевые адреса. Для каждого протокола, используемого в сети, строится своя таблица. Таблица помогает маршрутизатору определить адреса назначения для поступающих данных. Она включает следующую информацию:

  • все известные сетевые адреса;

  • способы связи с другими сетями;

  • возможные пути между маршрутизаторами;

  • стоимость передачи данных по этим маршрутам.

Маршрутизатор выбирает наилучший путь для данных, сравнивая стоимость и доступность различных вариантов.

Примечание. Таблицы маршрутизации существуют и для мостов. Таблица маршрутизации моста содержит адреса подуровня Управления доступа к среде, тогда как таблица маршрутизации маршрутизатора содержит номера сетей. Поэтому термин «таблица маршрутизации» имеет разный смысл для мостов и для маршрутизаторов.

Маршрутизаторы требуют специальной адресации: им понятны только номера сетей (что позволяет им обращаться друг к другу) и адреса локальных плат сетевого адаптера. К удаленным компьютерам маршрутизаторы обращаться не могут.

Маршрутизатор, принимая пакеты, предназначенные для удаленной сети, пересылает их тому маршрутизатору, который обслуживает сеть назначения. Такой механизм передачи пакетов можно рассматривать как достоинство маршрутизаторов, потому что они позволяют:

  • сегментировать большие сети на меньшие;

  • действовать как барьер безопасности между сегментами;

  • предотвращать широковещательный шторм.

Так как маршрутизаторы выполняют сложную обработку каждого пакета, они медленне большинства мостов. Когда пакеты передаются от одного маршрутизатора к другому, адреса источника и получателя Канального уровня отсекаются, а затем создаются заново. Это позволяет маршрутизатору направлять пакеты из сети TCP/IP Ethernet серверу в сети TCP/IP Token Ring.

Пропуская только адресные сетевые пакеты, маршрутизаторы препятствуют проникновению в сеть некорректных пакетов. Таким образом, с помощью фильтрации некорректных данных и широковещательных пакетов, маршрутизаторы уменьшают нагрузку на сеть.

Адрес узла назначения маршрутизаторы не проверяют; они «смотрят» только на адрес сети. Иначе говоря, маршрутизаторы будут пропускать информацию лишь в том случае, если известен адрес сети.

Не только маршрутизаторы, но и конечные узлы — компьютеры — должны принимать участие в выборе маршрута.

Если в локальной сети имеется несколько маршрутизаторов, то компьютер должен выбирать, какому из них следует отправить пакет.

Длина маршрута может существенно измениться в зависимости от того, какой маршрутизатор выберет компьютер для передачи своего пакета на сервер, расположенный, например, в Германии, если маршрутизатор 1 соединен выделенной линией с маршрутизатором в Копенгагене, а маршрутизатор 2 имеет спутниковый канал, соединяющий его с Токио.

В стеке TCP/IP маршрутизаторы и конечные узлы принимают решения о том, кому передавать пакет для его успешной доставки узлу назначения на основании так называемых таблиц маршрутизации (routing tables).

Таблица представляет собой типичный пример таблицы маршрутов, использующей IP-адреса сетей.

В этой таблице в столбце «Адрес сети назначения» указываются адреса всех сетей, которым данный маршрутизатор может передавать пакеты. В стеке TCP/IP принят так называемый одноша-говый подход к оптимизации маршрута продвижения пакета (next-hop routing) — каждый маршрутизатор и конечный узел принимают участие в выборе только одного шага передачи пакета. Поэтому в каждой строке таблицы маршрутизации указывается не весь маршрут в виде последовательности IP-адресов маршрутизаторов, через которые должен пройти пакет, а только один IP-адрес — адрес следующего маршрутизатора, которому нужно передать пакет. Вместе с пакетом следующему маршрутизатору передается ответственность за выбор следующего шага маршрутизации. Одношаговый подход к маршрутизации означает распределенное решение задачи выбора маршрута. Это снимает ограничение на максимальное количество транзитных маршрутизаторов на пути пакета.

Таблица маршрутов

Адрес сети

Адрес следующего

Номер выходного

Расстояние

назначения

маршрутизатора

порта

до сети назначения

56.0.0.0

198.21.17.7

1

20

56.0.0.0

213.34.12.4

2

130

116.0.0.0

213.34.12.4

2

1450

129.13.0.0

198.21.17.6

1

50

198.21.17.0

2

0

213.34.12.0

1

0

default

198.21.17.7

1

 

Для отправки пакета следующему маршрутизатору требуется знание его локального адреса, но в стеке TCP/IP в таблицах маршрутизации принято использование только IP-адресов для сохранения их универсального формата, не зависящего от типа сетей, входящих в интерсеть. Для нахождения локального адреса по известному IP-адресу необходимо воспользоваться протоколом ARP.

Конечный узел, как и маршрутизатор, имеет в своем распоряжении таблицу маршрутов унифицированного формата и на основании ее данных принимает решение, какому маршрутизатору нужно передавать пакет для сети N. Решение о том, что этот пакет нужно маршрутизировать, компьютер принимает в том случае, когда он видит, что адрес сети назначения пакета отличается от адреса его собственной сети (каждому компьютеру при конфигурировании администратор присваивает его IP-адрес или несколько IP-адресов, если компьютер одновременно подключен к нескольким сетям). Когда компьютер выбрал следующий маршрутизатор, то он просматривает кэш- таблицу адресов своего протокола ARP и, может быть, находит там соответствие IP-адреса следующего маршрутизатора его МАС-адресу. Если же нет, то по локальной сети передается широковещательный ARP-запрос и локальный адрес извлекается из ARP-ответа.

После этого компьютер формирует кадр протокола, используемого на выбранном порту, например кадр Ethernet, в который помещает МАС-адрес маршрутизатора. Маршрутизатор принимает этот кадр, извлекает из него пакет IP и просматривает свою таблицу маршрутизации для нахождения следующего маршрутизатора. При этом он выполняет те же действия, что и конечный узел.

24. Протоколы маршрутизации

Протокол маршрутизации — сетевой протокол, используемый маршрутизаторами для определения возможных маршрутов следования данных в составной компьютерной сети. Применение протокола маршрутизации позволяет избежать ручного ввода всех допустимых маршрутов, что, в свою очередь, снижает количество ошибок, обеспечивает согласованность действий всех маршрутизаторов в сети и облегчает труд администраторов.

Протоколы маршрутизации делятся на два вида, зависящие от типов алгоритмов, на которых они основаны:

Дистанционно-векторные протоколы

  • RIP — Routing Information Protocol;

  • IGRP — Interior Gateway Routing Protocol (лицензированный протокол Cisco Systems);

  • BGP — Border GateWay Protocol;

  • EIGRP — Enhanced Interior Gateway Routing Protocol (на самом деле он гибридный — объединяет свойства дистанционно-векторных протоколов и протоколов по состоянию канала; лицензированный протокол Cisco Systems);

  • AODV

Протоколы состояния каналов связи

  • IS-IS — Intermediate System to Intermediate System (стек OSI);

  • OSPF — Open Shortest Path First;

  • NLSP — NetWare Link-Services Protocol (стек Novell);

  • HSRP и CARP — протоколы резервирования шлюза в Ethernet-сетях.

  • OLSR

  • TBRPF

Протоколы междоменной маршрутизации

  • EGP;

  • BGP;

  • IDRP;

  • IS-IS level 3;

Протоколы внутридоменной маршрутизации

  • RIP;

  • IS-IS level 1-2;

  • OSPF;

  • IGRP;

  • EIGRP.

Существуют маршрутизаторы, которые в одной сети могут работать с несколькими протоколами (например, с IP и DECnet).

С маршрутизаторами работают не все протоколы. Протоколы, работающие с маршрутизаторами, называются маршрутизируемыми. К ним относятся:

  • DECnet;

  • IP;

  • IPX;

  • OSI;

  • XNS;

  • DDP (Apple Talk).

25. Функции маршрутизатора

Маршрутизатор не только знает адрес каждого сегмента, но и определяет наилучший маршрут для передачи данных и фильтрует широковещательные сообщения.

Маршрутизаторы (routers) работают на Сетевом уровне модели OSI. Это значит, что они могут переадресовывать и маршрутизировать пакеты через множество сетей, обмениваясь информацией (которая зависит от протокола) между отдельными сетями. Маршрутизаторы считывают в пакете адресную информацию сложной сети и, поскольку они функционируют на более высоком по сравнению с мостами уровне модели OSI, имеют доступ к дополнительным данным.

Маршрутизаторы могут выполнять следующие функции мостов:

  • фильтровать и изолировать трафик;

  • соединять сегменты сети.

Однако маршрутизаторам доступно больше информации, чем мостам, и они используют ее для оптимизации доставки пакетов. В сложных сетях без маршрутизаторов обойтись трудно, поскольку они обеспечивают лучшее (по сравнению с мостами) управление трафиком и не пропускают широковещательных сообщений. Маршрутизаторы могут обмениваться данными о состоянии маршрутов и, основываясь на этой информации, обходить медленные или неисправные каналы связи.

Маршрутизаторы требуют специальной адресации: им понятны только номера сетей (что позволяет им обращаться друг к другу) и адреса локальных плат сетевого адаптера. К удаленным компьютерам маршрутизаторы обращаться не могут.

Маршрутизатор, принимая пакеты, предназначенные для удаленной сети, пересылает их тому маршрутизатору, который обслуживает сеть назначения. Такой механизм передачи пакетов можно рассматривать как достоинство маршрутизаторов, потому что они позволяют:

  • сегментировать большие сети на меньшие;

  • действовать как барьер безопасности между сегментами;

  • предотвращать широковещательный шторм.

Пропуская только адресные сетевые пакеты, маршрутизаторы препятствуют проникновению в сеть некорректных пакетов. Таким образом, с помощью фильтрации некорректных данных и широковещательных пакетов, маршрутизаторы уменьшают нагрузку на сеть.

Адрес узла назначения маршрутизаторы не проверяют; они «смотрят» только на адрес сети. Иначе говоря, маршрутизаторы будут пропускать информацию лишь в том случае, если известен адрес сети.

Основная функция маршрутизатора - чтение заголовков пакетов сетевых протоколов, принимаемых и буферизуемых по каждому порту (например, IPX, IP, AppleTalk или DECnet), и принятие решения о дальнейшем маршруте следования пакета по его сетевому адресу, включающему, как правило, номер сети и номер узла.

Функции маршрутизатора могут быть разбиты на 3 группы в соответствии с уровнями модели OSI.