Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
В7.16.docx
Скачиваний:
1
Добавлен:
20.09.2019
Размер:
247.26 Кб
Скачать

В7 №16

Системный блок

Современный персональный компьютер может быть реализован в настольном (desktop), портативном (notebook) или карманном (handheld) варианте. Корпус системного блока может иметь горизонтальную (DeskTop) или вертикальную (Tower — башня) компоновку.

Современный персональный компьютер состоит из нескольких основных конструктивных компонентов:

  • системного блока;

  • монитора;

  • клавиатуры;

  • манипуляторов.   

Системный блок – самый главный блок компьютера. К нему подключаются все остальные блоки, называемые внешними или периферийными устройствами. В системном блоке находятся основные электронные компоненты компьютера. ПК построен на основе СБИС (сверхбольших интегральных схем), и почти все они находятся внутри системного блока, на специальных платах (плата - пластмассовая пластина, на которой закреплены и соединены между собой электронные компоненты - СБИСы, микросхемы и др.).  Самой важной платой компьютера является системная плата. На ней находятся центральный процессор, сопроцессор, оперативное запоминающее устройство – ОЗУ и разъемы для подключения плат-контроллеров внешних устройств. В системном блоке размещаются:

  • блок питания - устройство, преобразующее переменное напряжение электросети в постоянное напряжение различной полярности и величины, необходимое для питания системной платы и внутренних устройств. Блок питания содержит вентилятор, создающий циркулирующие потоки воздуха для охлаждения системного блока.

  • системная плата (материнская плата);

  • магистраль (системная шина);

  • процессор;

  • звуковая карта;

  • видеокарта (графическая карта);

  • накопители на жёстких магнитных дисках;

  • накопители на гибких магнитных дисках;

  • оптические, магнитооптические и пр. накопители;

  • накопитель CD-ROM, DVD-ROM;

системная плата (материнская плата);

Основной частью любой компьютерной системы является материнская плата с главным процессором и поддерживающими его микросхемами. Функционально материнскую плату можно описать различным образом. Иногда такая плата содержит всю схему компьютера (одноплатные). В противоположность одноплатным, в шиноориентированых компьютерах системная плата реализует схему минимальной конфигурации, остальные функции реализуются с помощью многочисленных дополнительных плат. Все компоненты соединяются шиной. В системной плате нет видеоадаптера, некоторых видов памяти и средств связи с дополнительными устройствами. Эти устройства (платы расширения) добавляются к системной плате путем присоединения к шине расширения, которая является частью системной платы.

 

Первая материнская плата была разработана фирмой IBM, и показана в августе 1981 года (PC-1). В 1983 году появился компьютер с увеличенной системной платой (PC-2). Максимум, что могла поддерживать PC-1 без использования плат расширения - 64К памяти. PC-2 имела уже 256К, но наиболее важное различие заключалось в программировании двух плат. Системная плата PC-1 не могла без корректировки поддерживать наиболее мощные устройства расширения, таких, как жесткий диск и улучшенные видеоадаптеры.

Материнская плата — это комплекс различных устройств поддерживающий работу системы в целом. Обязательными атрибутами материнской платы являются базовый процессороперативная память, системный BIOS, контролер клавиатуры, разъемы расширения.

Материнская плата внутри компьютера - главная монтажная деталь, к которой крепятся остальные компоненты.

 

 

При нормальной работе материнской платы о ней не вспоминают, пока не понадобится усовершенствовать компьютер. Обычно хотят поставить более быстрый процессор, что и ведет к замене материнской платы. Нельзя, например, заменить старый Pentium MMX на Pentium III без новой материнской платы.

По внешнему виду материнской платы можно определить, какие нужны процессорпамять и дополнительные устройства, вставляемые во внешние порты и гнезда компьютера.

По размерам материнские платы в общем случае можно разделить на три группы. Раньше все материнские платы имели размеры 8,5/11 дюймов. В XT размеры увеличились на 1 дюйм в AT размеры возросли еще больше. Часто речь может идти о “зеленых” платах (green mothеrboard). Сейчас выпускаются только такие платы. Данные системные платы позволяют реализовать несколько экономичных режимов энергопотребления (в том числе, так называемый “sleep”, при котором отключается питание от компонентов компьютера, которые в данный момент не работают).

Американское агентство защиты окружающей среды (EPA) сосредоточила свое внимание на уменьшении потребления энергии компьютерными системами. Оборудование, удовлетворяющее ее (EPA) требованиям должно в среднем (в режиме холостого хода) потреблять не более 30Вт, не использовать токсичные материалы и допускать 100% утилизацию. Поскольку современные микропроцессоры используют напряжение питания 3,3-4В, а на плату подается 5В, на системных  платах монтируют преобразователи напряжение.

Частота процессора, системной шины и шин периферийных устройств

Быстродействие различных компонентов компьютера (процессора, оперативной памяти и контроллеров периферийных устройств) может существенно различаться. Для согласования быстродействия на системной плате устанавливаются специальные микросхемы (чипсеты), включающие в себя контроллер оперативной памяти (так называемый северный мост) и контроллер периферийных устройств (южный мост). 

Рис.1. Логическая схема системной платы

Cеверный мост обеспечивает обмен информацией между процессором и оперативной памятью по системной шине. В процессоре используется внутреннее умножение частоты, поэтому частота процессора в несколько раз больше, чем частота системной шины. В современных компьютерах частота процессора может превышать частоту системной шины в 10 раз (например, частота процессора 1 ГГц, а частота шины - 100 МГц).

К северному мосту подключается шина PCI (Peripherial Component Interconnect bus - шина взаимодействия периферийных устройств), которая обеспечивает обмен информацией с контроллерами периферийных устройств. Частота контроллеров меньше частоты системной шины, например, если частота системной шины составляет 100 МГц, то частота шины PCI обычно в три раза меньше - 33 МГц. Контроллеры периферийных устройств (звуковая плата, сетевая плата, SCSI-контроллер,внутренний модем) устанавливаются в слоты расширения системной платы.

По мере увеличения разрешающей способности монитора и глубины цвета требования к быстродействию шины, связывающейвидеоплату с процессором и оперативной памятью, возрастают. В настоящее время для подключения видеоплаты обычно используется специальная шина AGP (Accelerated Graphic Port - ускоренный графический порт), соединенная с северным мостом и имеющая частоту, в несколько раз большую, чем шина PCI.

Южный мост обеспечивает обмен информацией между северным мостом и портами для подключения периферийного оборудования.

Устройства хранения информации (жесткие дискиCD-ROMDVD-ROM) подключаются к южному мосту по шине UDMA (Ultra Direct Memory Access - прямое подключение к памяти).

Мышь и внешний модем подключаются к южному мосту с помощью последовательных портов, которые передают электрические импульсы, несущие информацию в машинном коде, последовательно один за другим. Обозначаются последовательные порты как COM1 и COM2, а  аппаратно реализуются с помощью 25-контактного и 9-контактного разъемов, которые выведены на заднюю панель системного блока.

Принтер подключается к параллельному порту, который обеспечивает более высокую скорость передачи информации, чем последовательные порты, так как передает одновременно 8 электрических импульсов, несущих информацию в машинном коде. Обозначается параллельный порт как LTP, а аппаратно реализуется в виде 25-контактного разъема на задней панелисистемного блока.

Для подключения сканеров и цифровых камер обычно используется порт USB (Universal Serial Bus - универсальная последовательная шина), который обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств. Клавиатура подключается обычно с помощью порта PS/2.

Магистраль(системная шина)

С появлением на рынке системы Windows, заметно упростилась работа с компьютером. Но для установки нового оборудования все же приходится открывать системный блок. Многим пользователям это явно не по душе, поэтому они делают это неохотно. Требовался более простой способ подключения устройств к компьютеру, без специальной настройки, позволяющей устройствам устанавливаться автоматически. Цель упрощения была также и в другом - устройства должны добавляться и удаляться без перезагрузки компьютера.

Первым шагом на пути к этому стала универсальная последовательная шина или USB.

Шина - это группа электрических каналов, передающая до 32 двоичных цифр (битов) за один раз. Процессоры, вроде Intel Pentium и его конкурентов, способны обрабатывать все 32 двоичные цифры одновременно, поэтому они и называются 32-битные процессоры.

Шины работают с разными скоростями, измеряемыми в мегагерцах (MHz). Число бит в шине вместе со скоростью передачи данных определяет тип процессора, который может быть к ней подключен. В старых процессорах использовались восьмибитные шины, работающие с низкой частотой. Нынешний стандарт - 32-битные с частотой 133MHz, а старые Pentium II и III работают с частотой 100MHz.

Процессоры работают быстрее, чем шины, к которым они прикреплены, и имеют внутреннюю скорость в несколько раз превосходящую скорость шины. Pentium с частотой 200MHz работает в три раза быстрее, чем 66MHz шина, а Pentium II 333MHz работает в пять раз быстрее своей шины. В настоящий момент скорость шины не превышает 133MHz, так как процессоры все ускоряются, соотношение их скоростей растет. Самый быстрый чип Pentium III, например, имеет отношение скоростей процессора и шины, равное 7,5:1.

 

Состав магистрали

 

Магистраль (системная шина) включает в себя три многоразрядные шины:

 

● шину данных,

● шину адреса,

● шину управления.

 

Они представляют собой многопроводные линии. К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода и вывода и хранения информации, которые обмениваются информацией на машинной языке (последовательностями нулей и единиц в форме электрических импульсов). Шина данных Шина данных служит для пересылки данных между ЦП и памятью или ЦП и устройствами ввода/вывода. Эти данные могут представлять собой как команды ЦП, так и информацию, которую ЦП посылает в порты ввода/вывода или принимает оттуда. Таким образом, данные по шине данных могут передаваться от одного устройства к другому в любом направлении.

Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники.

В МП 8088 шина данных имеет ширину 8 разрядов. В МП 8086, 80186, 80286 ширина шины данных 16 разрядов; в МП 80386, 80486, Pentium и Pentium Pro - 32 разряда. Шина адреса Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производитпроцессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении - от процессора к оперативной памяти и устройствам (однонаправленная шина). Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле: N = 2I , где I - разрядность шины адреса. Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 36 бит. Таким образом, максимально возможное количество адресуемых ячеек памяти равно: N = 2 36 = 68 719 476 736

 

Шина управления По шине управления передаются управляющие сигналы, определяющие характер обмена информацией по магистрали и предназначенные памяти и устройствам ввода/вывода. Сигналы управления показывают, какую операцию - считывание или запись информации из памяти - нужно производить, синхронизируют обмен информацией между устройствами и так далее. Магистральная организация предполагает наличие управляющего модуля. Основное назначение этого модуля - организация передачи слова между двумя другими модулями.

 

Виды шин

 

Шины могут быть синхронными (осуществляющими передачу данных только по тактовым импульсам) и асинхронными (осуществляющими передачу данных в произвольные моменты времени), а также использовать различные схемы арбитража (то есть способа совместного использования шины несколькими устройствами). Если обмен информацией ведется между периферийным устройством и контроллером, то соединяющая их линия передачи данных называется интерфейсом передачи данных, или просто интерфейсом. Среди применяемых в персональных компьютерах интерфейсов выделяются стандарты EIDE и SCSI.

 

Шина с тремя состояниями

Три состояние на шине - это состояния высокого уровня, низкого уровня и 3-ее состояние. 3-ее состояние позволяет устройству или процессору отключиться от шины и не влиять на уровни, устанавливаемые на шине другими устройствами или процессорами. Таким образом, только одно устройство является ведущим на шине. Управляющая логика активизирует в каждый конкретный момент только одно устройство, которое становиться ведущим. Когда устройство активизировано,  оно помещает свои данные на шину, все же остальные потенциальные ведущие переводятся в пассивное состояние.К шине может быть подключено много приемных устройств. Сочетание управляющих и адресных сигналов, определяет для кого именно предназначаются данные на шине. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю когда ему следует принимать данные. Получатели и отправители могут быть однонаправленными и двунаправленными.

 

Как происходят операции на магистрали?

 

Операция на системной магистрали начинается с того, что управляющий модуль устанавливает на шине кодовое слово модуля - отправителя и активизирует линию строба отправителя. Это позволяет модулю, кодовое слово которого установлено на шине, понять, что он является отправителем. Затем управляющий модуль устанавливает на кодовое слово модуля - получателя и активизирует линию строба получателя. Это позволяет модулю, кодовое слово которого установлено на шине, понять, что он является получателем.

После этого управляющий модуль возбуждает линию строба данных, в результате чего содержимое регистра отправителя пересылается в регистр получателя. Этот шаг может быть повторен любое число раз, если требуется передать много слов. Данные пересылаются от отправителя получателю в ответ на импульс, возбуждаемый управляющим модулем на соответствующей линии строба. При этом предполагается, что к моменту появления импульса строба в модуле - отправителе данные подготовлены к передаче, а модуль - получатель готов принять данные. Такая передача данных носит название синхронной (синхронизированной).

Процессы на магистралях могут носить асинхронный характер. Передачу данных от отправителя получателю можно координировать с помощью линий состояния, сигналы на которых отражают условия работы обоих модулей. Как только модуль назначается отправителем, он принимает контроль над линией готовности отправителя, сигнализируя с ее помощью о своей готовности  принимать данные. Модуль, назначенный получателем, контролирует линию готовности получателя, сигнализируя с ее помощью о готовности принимать данные.

При передаче данных должны соблюдаться два условия. Во-первых, передача осуществляется лишь в том случае, если получатель и отправитель сигнализируют о своей готовности. Во-вторых, каждое слово должно передаваться один раз. Для обеспечения этих условий предусматривается определенная последовательность действий при передачи данных. Эта последовательность носит название протокола.

В соответствии с протоколом отправитель, подготовив новое слово, информирует об этом получателя. Получатель, приняв очередное слово, информирует об этом отправителя. Состояние линий готовности в любой момент времени определяет действия, которые должны выполнять оба модуля.

Каждый шаг в передаче данных от одной части системы к другой называется циклом магистрали (или часто машинным циклом). Частота этих циклов определяется тактовыми сигналами ЦП. Длительность цикла магистрали связана с частотой тактовых сигналов.

 

Шина USB

 

Сегодня USB-шина очень популярна, но когда-то компания Windows весьма слабо поддерживала эту идею. После выпуска Windows 98 и Apple iMac, USB стала набирать обороты и появилось огромное количество USB-устройств.

Шина USB (Universal Serial Bus) - универсальная шина, предназначенная для легкого и быстрого подключения периферийных устройств. Стандарт разработали семь компаний: Compaq, Digital Equipment, IBM, Intel, Microsoft, NEC и Northern Telecom. USB-шнур представляет собой две скрученные пары: по одной паре происходит передача данных в каждом направлении (дифференциальное включение), а другая есть линия питания (+5 V). Благодаря встроенным линиям питания, обеспечивающим ток до 500 мА, USB часто позволяет применять устройства без собственного блока питания (если эти устройства потребляют ток силой не более 500 мА).

К одному компьютеру можно подсоединить до 127 устройств через цепочку концентраторов (они используют топологию звезда). Причем эти устройства могут быть самыми разными - начиная от клавиатуры с мышью и кончая сканерами и цифровыми камерами.

Передача данных по шине может осуществляться как в асинхронном, так и в синхронном режиме. В USB обмен информации с быстрыми устройствами идет на скорости 12 Мbits/s, а с медленными - 1.5 Мbits/s. Все подключенные к USB-устройства конфигурируются автоматически (PnP) и допускают Hot-Swap включение/выключение (без перезагрузки или выключения компьютера). Достигается это следующим образом. При подключении кабеля к USB-разъему контроллер USB-контроллер  чувствует скачок напряжения и подает соответствующий сигнал операционной системе, а она загружает драйвер, который и обеспечивает работу устройства на программном уровне. Или, если драйвер не был установлен, система, видя это безобразие, опознает устройство и самостоятельно или с помощью пользователя ставит необходимые драйвера. При дальнейшем включении/выключении этого устройство инициализация происходит, как описано в первом случае. Во время опознавания на экране появляется соответствующее сообщение, а изменения в Device Manager'е происходят автоматически. Устройство также сообщает информацию о его типе, производителе, назначении и требуемой пропускной способности. Ему назначается уникальный идентификационный номер. Это все, что нужно, никаких вопросов об IRQ, адресах портов и DMA больше не будет. Правда, одно прерывание все же нужно - для самого контроллера USB.

Для взаимодействия устройств используется кабель, имеющий на концах разъемы, напоминающие телефонные. Существует два вида разъемов: разъем типа "А" и разъем типа "B". Как правило, устройство подключается к кабелю одним разъемом (B), а другим к USB-порту (A). Устройства можно подключать по цепочке, для этого они могут иметь дополнительный порт для подключения кабеля, идущего на следующее устройство. Однако это не всегда так. Поэтому существуют специальные USB-хабы, подключаемые к порту USB и делящих его на несколько. Есть хабы с блоком питания, они позволяют в некоторой степени обойти ограничение на электрическую нагрузку. Хаб является обычным USB-устройством, поэтому их количество может быть более одного; их тоже можно включать в цепочку. Старые компьютеры, не имеющие USB (сейчас USB-контроллер встраивается непосредственно в чипсет), можно оснастить картой типа PCI to USB.

Теоретически к шине USB можно подключить все что угодно - хоть жесткий диск или систему видеомонтажа. Такие устройства даже существуют и покупаются. Но это уже, как говориться, попытка совместить несовместимое. Все упирается в максимальную пропускную способность шины. Ее хватает только для передачи видео очень посредственного качества. Жесткий диск тоже будет сильно притормаживать, так как 12 мегабит для жесткого диска - не скорость. Единственная область, где ему можно найти применение, это роль "большой дискеты" или использование в качестве второго диска большой емкости в портативном компьютере, но уж писать высококачественный AVI-файл в реальном времени на такой агрегат никак не получится. Правда, на подходе USB 2.0, где скорость будет намного увеличена.

Комп'ютер - це універсальна технічна система, спроможна чітко виконувати визначену послідовність операцій певної програми. Персональним комп'ютером (ПК) може користуватись одна людина без допомоги обслуговуючого персоналу. Взаємодія з користувачем відбувається через багато середовищ, від алфавітно-цифрового або графічного діалогу за допомогою дисплея, клавіатури та мишки до пристроїв віртуальної реальності.

Конфігурацію ПК можна змінювати в міру необхідності. Але, існує поняття базової конфігурації, яку можна вважати типовою:

  • системний блок;

  • монітор;

  • клавіатура;

  • мишка.

Комп'ютери випускаються і у портативному варіанті (laptop або notebook виконання). В цьому випадку, системний блок, монітор та клавіатура містяться в одному корпусі: системний блок прихований під клавіатурою, а монітор вбудований у кришку.

Системний блок - основна складова, в середині якої містяться найважливіші компоненти. Пристрої, що знаходяться в середині системного блока називають внутрішніми, а пристрої, що під'єднуються ззовні називають зовнішніми. Зовнішні додаткові пристрої, що призначені для вводу та виводу інформації називаються також периферійними. За зовнішнім виглядом, системні блоки відрізняються формою корпуса, який може бути горизонтального (desktop) або вертикального (tower) виконання. Корпуси вертикального виконання можуть мати різні розміри: повнорозмірний (BigTower), середньорозмірний (MidiTower), малорозмірний (MiniTower). Корпуси горизонтального виконання є двох форматів: вузький (Full-AT) та надто вузький (Baby-AT). Корпуси персональних комп'ютерів мають різні конструкторські особливості та додаткові елементи (елементи блокування несанкціонованого доступу, засоби контролю внутрішньої температури, шторки від пилу).

Корпуси поставляються разом із блоком живлення. Потужність блоку живлення є одним із параметрів корпусу. Для масових моделей достатньою є потужність 200-250 Вт.

Основними вузлами системного блоку є:

  • електричні плати, що керують роботою комп'ютера (мікропроцесор, оперативна пам'ять, контролери пристроїв тощо);

  • накопичувач на жорсткому диску (вінчестер), призначений для читання або запису інформації;

  • накопичувачі (дисководи) для гнучких магнітних дисків (дискет).

Основною платою ПК є материнська плата (MotherBoard). На ній розташовані:

  • процесор - основна мікросхема, що виконує математичні та логічні операції;

  • чіпсет (мікропроцесорний комплект) - набір мікросхем, що керують роботою внутрішніх пристроїв ПК і визначають основні функціональні можливості материнської плати;

  • шини - набір провідників, по яких відбувається обмін сигналами між внутрішніми пристроями комп'ютера;

  • оперативний запам'ятовуючий пристрій (ОЗП) - набір мікросхем, що призначені для тимчасового зберігання даних, поки включений комп'ютер;

  • постійний запам'ятовуючий пристрій (ПЗП) - мікросхема, призначена для довготривалого зберігання даних, навіть при вимкненому комп'ютері;

  • роз'єми для під'єднання додаткових пристроїв (слоти).

Процесор

Процесор - головна мікросхема комп'ютера, його "мозок". Він дозволяє виконувати програмний код, що знаходиться у пам'яті і керує роботою всіх пристроїв комп'ютера. Швидкість його роботи визначає швидкодію комп'ютера. Конструктивно, процесор - це кристал кремнію дуже маленьких розмірів. Процесор має спеціальні комірки, які називаються регістрами. Саме в цих регістрах містяться команди, які виконуються процесором, а також дані, якими оперують ці команди. Робота процесора полягає у вибиранні з пам'яті у певній послідовності команд та даних і виконанні їх. На цьому і базується виконання програм. У ПК обов'язково має бути присутній центральний процесор (Central Rpocessing Unit - CPU), який виконує всі основні операції. Часто ПК оснащений додатковими сопроцесорами, орієнтованими на ефективне виконання специфічних функцій, такими як, математичний сопроцесор для обробки числових даних у форматі з плаваючою точкою, графічний сопроцесор для обробки графічних зображень, сопроцесор введення/виведення для виконання операції взаємодії з периферійними пристроями.

Основними параметрами процесорів є:

  • тактова частота,

  • розрядність,

  • робоча напруга,

  • коефіцієнт внутрішнього домноження тактової частоти,

  • розмір кеш пам'яті.

Тактова частота визначає кількість елементарних операцій (тактів), що виконуються процесором за одиницю часу. Тактова частота сучасних процесорів вимірюється у МГц (1 Гц відповідає виконанню однієї операції за одну секунду, 1 МГц=106 Гц). Чим більша тактова частота, тим більше команд може виконати процесор, і тим більша його продуктивність. Перші процесори, що використовувалися в ПК працювали на частоті 4,77 МГц, а сьогодні робочі частоти найсучасніших процесорів досягли позначки в 2 ГГц (1 ГГц = 103 МГц).

Розрядність процесора показує, скільки біт даних він може прийняти і обробити в свої регістрах за один такт. Розрядність процесора визначається розрядністю командної шини, тобто кількістю провідників у шині, по якій передаються команди. Сучасні процесори сімейства Intel є 32-розрядними.

Робоча напруга процесора забезпечується материнською платою, тому різним маркам процесорів відповідають різні материнські плати. Зараз робоча напруга процесорів не перевищує 3 В. Пониження робочої напруги дозволяє зменшити розміри процесорів, а також зменшити тепловиділення в процесорі, що дозволяє збільшити його продуктивність без загрози перегріву.

Коефіцієнт внутрішнього домноження тактової частоти - це коефіцієнт, на який слід помножити тактову частоту материнської плати, для досягнення частоти процесора. Тактові сигнали процесор отримує з материнської плати, яка з чисто фізичних причин не може працювати на таких високих частотах, як процесор. На сьогодні тактова частота материнських плат складає 100-133 МГц. Для отримання більш високих частот у процесорі відбувається внутрішнє домноження на коефіцієнт 4, 4.5, 5 і більше.

Кеш-пам'ять. Обмін даними всередині процесора відбувається набагато швидше ніж обмін даними між процесором і оперативною пам'яттю. Тому, для того щоб зменшити кількість звертань до оперативної пам'яті, всередині процесора створюють так звану надоперативну або кеш-пам'ять. Коли процесору потрібні дані, він спочатку звертається до кеш-пам'яті, і тільки якщо там потрібні дані відсутні, відбувається звертання до оперативної пам'яті. Чим більший розмір кеш-пам'яті, тим більша ймовірність, що необхідні дані знаходяться там. Тому високопродуктивні процесори оснащуються підвищеними обсягами кеш-пам'яті. Розрізняють кеш-пам'ять першого рівня (виконується на одному кристалі з процесором і має об'єм порядку декілька десятків Кбайт), другого рівня (виконується на окремому кристалі, але в межах процесора, з об'ємом в сто і більше Кбайт) та третього рівня (виконується на окремих швидкодійних мікросхемах із розташуванням на материнській платі і має обсяг один і більше Мбайт).

У процесі роботи процесор обробляє дані, що знаходяться в його регістрах, оперативній пам'яті та зовнішніх портах процесора. Частина даних інтерпретується як власне дані, частина даних - як адресні дані, а частина - як команди. Сукупність різноманітних команд, які може виконати процесор над даними, утворює так звану систему команд процесора. Чим більший набір команд процесора, тим складніша його архітектура, тим довший запис команд у байтах і тим довша середня тривалість виконання команд.

Так, процесори Intel, які використовуються в IBM-сумісних ПК, нараховують більше тисячі команд і відносяться до так званих процесорів із розширеною системою команд - CISC-процесорів (CISC - Complex Instruction Set Computing). На противагу CISC-процесорам розроблено процесори архітектури RISC із скороченою системою команд (RISC - Reduced Instruction Set Computing). При такій архітектурі кількість команд набагато менша, і кожна команда виконується швидше. Таким чином, програми, що складаються з простих команд виконуються набагато швидше на RISC-процесорах.

Зворотна сторона скороченої системи команд полягає в тому, що складні операції доводиться емулювати далеко не завжди ефективною послідовністю простіших команд. Тому CISC-процесори використовуються в універсальних комп'ютерних системах, а RISC-процесори - у спеціалізованих. Для ПК платформи IBM PC домінуючими є CISC-процесори фірми Intel, хоча останнім часом компанія AMD виготовляє процесори сімейства AMD-K6, які мають гібридну архітектуру (внутрішнє ядро цих процесорів виконане по RISC-архітектурі, а зовнішня структура - по архітектурі CISC).

В комп'ютерах IBM PC використовують процесори, розроблені фірмою Intel, або сумісні з ними процесори інших фірм, що відносяться до так званого сімейства x86. Родоначальником цього сімейства був 16-розрядний процесор Intel 8086. В подальшому випускалися процесори Intel 80286, Intel 80386, Intel 80486 із модифікаціями, різні моделі Intel Pentium, Pentium MMX, Pentium Pro, Pentium II, Celeron, Pentium III. Найновішою моделлю фірми Intel є процесор Pentium IV. Серед інших фірм-виробників процесорів слід відзначити AMD із моделями AMD-K6, Athlon, Duron та Cyrix.

Шини

З іншими пристроями, і в першу чергу з оперативною пам'яттю, процесор зв'язаний групами провідників, які називаються шинами. Основних шин три:

  • шина даних,

  • адресна шина,

  • командна шина.

Адресна шина. Дані, що передаються по цій шині трактуються як адреси комірок оперативної пам'яті. Саме з цієї шини процесор зчитує адреси команд, які необхідно виконати, а також дані, із якими оперують команди. У сучасних процесорах адресна шина 32-розрядна, тобто вона складається з 32 паралельних провідників.

Шина даних. По цій шині відбувається копіювання даних з оперативної пам'яті в регістри процесора і навпаки. У ПК на базі процесорів Intel Pentium шина даних 64-розрядна. Це означає, що за один такт на обробку поступає відразу 8 байт даних.

Командна шина. По цій шині з оперативної пам'яті поступають команди, які виконуються процесором. Команди представлені у вигляді байтів. Прості команди вкладаються в один байт, але є й такі команди, для яких потрібно два, три і більше байтів. Більшість сучасних процесорів мають 32-розрядну командну шину, хоча існують 64-розрядні процесори з командною шиною.

Шини на материнській платі використовуються не тільки для зв'язку з процесором. Усі інші внутрішні пристрої материнської плати, а також пристрої, що підключаються до неї, взаємодіють між собою за допомогою шин. Від архітектури цих елементів багато в чому залежить продуктивність ПК у цілому.

Розглянемо коротко основні шинні інтерфейси материнських плат.

ISA (Industry Standard Architecture). Дозволяє зв'язати між собою всі пристрої системного блоку, а також забезпечує просте підключення нових пристроїв через стандартні слоти. Пропускна здатність складає до 5,5 Мбайт/с. У сучасних комп'ютерах може використовуватися лише для під'єднання зовнішніх пристроїв, що не вимагають більшої пропускної здатності (звукові карти, модеми і т.д.).

EISA (Extended ISA). Розширення стандарту ISA. Пропускна здатність зросла до 32 Мбайт/с. Як і стандарт ISA, цей стандарт вважається таким, що вичерпав свої можливості (у майбутньому випуск плат, що підтримують ці інтерфейси припиниться).

VLB (VESA Local Bus). Інтерфейс локальної шини стандарту VESA. Локальна шина з'єднує процесор з оперативною пам'яттю в обхід основної шини. Вона працює на більшій частоті, ніж основна шина, що дозволяє збільшити швидкість передавання даних. Пізніше в локальну шину "врізали" інтерфейс для підключення відеоадаптера, який також вимагає підвищеної пропускної здатності, що і призвело до появи стандарту VLB. Пропускна здатність - до 130 Мбайт/с, робоча тактова частота - 50 МГц (але вона залежить від кількості пристроїв, під'єднаних до шини, що є головним недоліком інтерфейсу VLB).

PCI (Peripherial Component Interconnect). Стандарт підключення зовнішніх пристроїв, введений в ПК на базі процесора Pentium. За своєю суттю, це також інтерфейс локальної шини з роз'ємами для під'єднання зовнішніх компонентів. Даний інтерфейс підтримує частоту шини до 66 МГц і забезпечує швидкодію до 264 Мбайт/с незалежно від кількості під'єднаних пристроїв. Важливим нововведенням цього стандарту була підтримка механізму plug-and-play, суть якого полягає в тому, що після фізичного підключення зовнішнього пристрою до роз'єму шини PCI відбувається автоматичне конфігурування цього пристрою.

FSB (Front Side Bus). Починаючи з процесора Pentium Pro для зв'язку з оперативною пам'яттю використовується спеціальна шина FSB. Ця шина працює на частоті 100-133 МГц і має пропускну здатність до 800 Мбайт/с. Частота шини FSB є основним параметром, саме вона вказується в специфікації материнської плати. За шиною PCI залишилася лише функція підключення нових зовнішніх пристроїв.

AGP (Advanced Graphic Port). Спеціальний шинний інтерфейс для підключення відеоадаптерів. Розроблений у зв'язку з тим, що параметри шини PCI не відповідають вимогам відеоадаптерів на швидкодію. Частота цієї шини - 33 або 66 МГц, пропускна здатність до 1066 Мбайт/с.

USB (Universal Serial Bus). Стандарт універсальної послідовної шини визначає новий спосіб взаємодії комп'ютера з периферійним обладнанням. Він дозволяє підключати до 256 різних пристроїв із послідовним інтерфейсом, причому пристрої можуть під'єднуватися ланцюжком. Продуктивність шини USB відносно невелика і складає 1,55 Мбіт/с. Серед переваг цього стандарту слід відзначити можливість підключати і відключати пристрої в "гарячому режимі" (тобто без перезавантаження комп'ютера), а також можливість об'єднання декількох комп'ютерів у просту мережу без використання спеціального апаратного та програмного забезпе-чення.

Внутрішня пам'ять

Під внутрішньою пам'яттю розуміють всі види запам'ятовуючих пристроїв, що розташовані на материнській платі. До них відносяться:

  • оперативна пам'ять,

  • постійна пам'ять,

  • енергонезалежна пам'ять.

Оперативна пам'ять RAM (Random Access Memory).

Пам'ять RAM - це масив кристалічних комірок, що здатні зберігати дані. Вона використовується для оперативного обміну інформацією (командами та даними) між процесором, зовнішньою пам'яттю та периферійними системами. З неї процесор бере програми та дані для обробки, до неї записуються отримані результати. Назва "оперативна" походить від того, що вона працює дуже швидко і процесору не потрібно чекати при зчитуванні даних з пам'яті або запису. Однак, дані зберігаються лише тимчасово при включеному комп'ютері, інакше вони зникають.

За фізичним принципом дії розрізняють динамічну пам'ять DRAM і статичну пам'ять SRAM. Комірки динамічної пам'яті можна представити у вигляді мікроконденсаторів, здатних накопичувати електричний заряд. Недоліки пам'яті DRAM: повільніше відбувається запис і читання даних, потребує постійної підзарядки. Переваги: простота реалізації і низька вартість. Комірки статичної пам'яті можна представити як електронні мікроелементи - тригери, що складаються з транзисторів. У тригері зберігається не заряд, а стан (включений/виключений). Переваги пам'яті SRAM: значно більша швидкодія. Недоліки: технологічно складніший процес виготовлення, і відповідно, більша вартість. Мікросхеми динамічної пам'яті використовуються як основна оперативна пам'ять, а мікросхеми статичної - для кеш-пам'яті.

Кожна комірка пам'яті має свою адресу, яка виражається числом. В сучасних ПК на базі процесорів Intel Pentuim використовується 32-розрядна адресація. Це означає, що всього незалежних адрес є 232, тобто можливий адресний простір складає 4,3 Гбайт. Однак, це ще не означає, що саме стільки оперативної пам'яті має бути в системі. Граничний розмір обсягу пам'яті визначається чіпсетом материнської плати і зазвичай складає декілька сот мегабайт.

Оперативна пам'ять у комп'ютері розміщена на стандартних панельках, що звуться модулями. Модулі оперативної пам'яті вставляють у відповідні роз'єми на материнській платі. Конструктивно модулі пам'яті мають два виконання - однорядні (SIMM - модулі) та дворядні (DIMM - модулі). На комп'ютерах з процесорами Pentium однорядні модулі можна застосовувати лише парами (кількість роз'ємів для їх встановлення на материнській платі завжди парне). DIMM - модулі можна встановлювати по одному. Комбінувати на одній платі різні модулі не можна. Основними характеристиками модулів оперативної пам'яті є:об'єм пам'яті та час доступу. SIMM- модулі є об'ємом 4, 8, 16, 32 мегабайти; DIMM - модулі - 16, 32, 64, 128, 256 Мбайт. Час доступу показує, скільки часу необхідно для звертання до комірок пам'яті, чим менше, тим краще. Вимірюється у наносекундах. SIMM - модулі - 50-70 нс, DIMM - модулі - 7-10 нс.