Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
31-37.docx
Скачиваний:
12
Добавлен:
16.09.2019
Размер:
529.31 Кб
Скачать

31!

Становление теоретической астрономии: эпоха Возрождения и раннее Новое Время

[править]Раннее Возрождение

В XV веке немецкий философ, кардинал Николай Кузанский, заметно опередив своё время, высказал мнение, что Вселенная бесконечна, и у неё вообще нет центра — ни Земля, ни Солнце, ни что-либо иное не занимают особого положения. Все небесные тела состоят из той же материи, что и Земля, и, вполне возможно, обитаемы. За век до Галилея он утверждал: все светила, включая Землю, движутся в пространстве, и каждое находящийся на нём наблюдатель вправе считать неподвижным.

В XV веке большую роль в развитии наблюдательной астрономии сыграли труды Георга Пурбаха, а также его ученика и друга Иоганна Мюллера (Региомонтана). Кстати, они стали первыми в Европе учёными, не имевшими духовного сана. После серии наблюдений они убедились, что все имевшиеся астрономические таблицы, включая Альфонсинские, устарели: положение Марса давалось с ошибкой на 2°, а лунное затмение опоздало на целый час! Для повышения точности расчётов Региомонтан составил новую таблицу синусов (через 1') и таблицу тангенсов. Только что появившеесякнигопечатание способствовало тому, что исправленный учебник Пурбаха и «Эфемериды» Региомонтана в течение десятилетий были основными астрономическими руководствами для европейцев. Таблицы Региомонтана были намного точнее прежних и исправно служили вплоть до Коперника. Их использовали Колумб и Америго Веспуччи. Позже таблицы некоторое время использовались даже для расчётов по гелиоцентрической модели.

Региомонтан также предложил метод определения долготы по разнице табличного и местного времени, соответствующего заданному положению Луны. Он констатировал расхождение юлианского календаря с солнечным годом почти на 10 дней, что заставило церковь задуматься о календарной реформе. Такая реформа обсуждалась на Латеранском соборе (Рим, 1512—1517) и была реализована в 1582 году.

[править]Коперниканская революция

Основная статья: Гелиоцентрическая система мира

См. также: Космология Джордано Бруно

К XVI веку стало ясно, что система Птолемея неадекватна и приводит к недопустимо большим расчётным ошибкам. Николай Коперник стал первым, кто предложил детально проработанную альтернативу, причём основанную на совершенно иной модели мира.

Главный труд Коперника — «De Revolutionibus Orbium Caelestium» («О вращении небесных сфер») — был в основном завершён в 1530 году, но только перед смертью Коперник решился опубликовать его. Впрочем, в 1503—1512 годах Коперник распространял среди друзей рукописный конспект своей теории («Малый комментарий о гипотезах, относящихся к небесным движениям»), а его ученик Ретик опубликовал ясное изложение гелиоцентрической системы в 1539 году. Повидимому, слухи о новой теории широко разошлись уже в 1520-х годах.

По структуре главный труд Коперника почти повторяет «Альмагест» в несколько сокращённом виде (6 книг вместо 13). В первой книге также приведены аксиомы, но вместо положения о неподвижности Земли помещена иная аксиома — Земля и другие планеты вращаются вокруг оси и вокруг Солнца. Эта концепция подробно аргументируется, а «мнение древних» более или менее убедительно опровергается. Коперник упоминает как своих союзников только античных философов Филолая и Никетаса.

С гелиоцентрических позиций Коперник без труда объясняет возвратное движение планет. Далее приводится тот же материал, что и у Птолемея, лишь немного уточнённый: сферическая тригонометрия, звёздный каталог, теория движения Солнца и Луны, оценка их размеров и расстояния до них, теорияпрецессии и затмений.

В книге III, посвящённой годовому движению Земли, Коперник делает эпохальное открытие: объясняет «предварение равноденствий» смещением направления земной оси. В книгах V и VI, посвящённых движению планет, благодаря гелиоцентрическому подходу стало возможно оценить средние расстояния планет от Солнца, и Коперник приводит эти данные, довольно близкие к современным.

Система мира Коперника, с современной точки зрения, ещё недостаточно радикальна. Все орбиты круговые, движение по ним равномерное, так чтоэпициклы пришлось сохранить — правда, вместо 80 их стало 34. Механизм вращения планет сохранён прежним — вращение сфер, к которым прикреплены планеты. Но тогда ось Земли в ходе годичного вращения должна поворачиваться, описывая конус; чтобы объяснить смену времён года, Копернику пришлось ввести третье (обратное) вращение Земли вокруг оси, перпендикулярной эклиптике, которое использовал также для объяснения прецессии. На границу мира Коперник поместил сферу неподвижных звёзд.

Строго говоря, модель Коперника даже не была гелиоцентрической, так как Солнце он расположил не в центре планетных сфер.

Птолемеевское смещение центра орбиты (эквант) Коперник, естественно, исключил, и это стало шагом назад — первоначально более точные, чем птолемеевы, таблицы Коперника вскоре существенно разошлись с наблюдениями, что немало озадачило и охладило её восторженных поклонников. И всё же в целом модель мира Коперника была колоссальным шагом вперёд.

Католическая церковь вначале отнеслась к возрождению «пифагорейства» благодушно, отдельные её столпы даже покровительствовали Копернику. Папа Климент VII, озабоченный уточнением календаря, поручил кардиналу Вигманштадту прочитать высшему клиру лекцию о новой теории, которая и была со вниманием выслушана. Появились, однако, среди католиков и ярые противники гелиоцентризма. Однако уже с 1560-х годов в нескольких университетах Швейцарии и Италии начались лекции по системе Коперника. Математическая основа модели Коперника была несколько проще, чем у птолемеевой, и этим сразу воспользовались в практических целях: были выпущены уточнённые астрономические («Прусские») таблицы (1551, Э. Рейнгольд).

Из других событий бурного XVI века отметим, что 5 октября 1582 года была проведена давно запланированная календарная реформа (5 октября стало 15-м). Новый календарь был назван григорианским в честь папы Григория XIII, но настоящим автором проекта был итальянский астроном и врачЛуиджи Лиллио.

Зако́ны Ке́плера — три эмпирических соотношения, интуитивно подобранных Иоганном Кеплером на основе анализа астрономических наблюденийТихо Браге. Описывают идеализированную гелиоцентрическую орбиту планеты. В рамках классической механики выводятся из решения задачи двух тел предельным переходом  /  → 0, где  ,   — массы планеты и Солнца.

[править]Первый закон Кеплера (закон эллипсов)

Первый закон Кеплера.

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Форма эллипса и степень его сходства с окружностью характеризуется отношением  , где   — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния),   — большая полуось. Величина   называется эксцентриситетом эллипса. При   и   эллипс превращается в окружность.

Доказательство первого закона Кеплера   [показать]

[править]Второй закон Кеплера (закон площадей)

Второй закон Кеплера.

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.

Применительное к нашей Солнечной системе, с этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.

Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Доказательство второго закона Кеплера   [показать]

[править]Третий закон Кеплера (гармонический закон)

Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.

, где   и   — периоды обращения двух планет вокруг Солнца, а   и   — длины больших полуосей их орбит.

Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты:  , где   — масса Солнца, а   и   — массы планет.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.

Законы Кеплера

Планеты движутся вокруг Солнца по вытянутым эллиптическим орбитам, причем Солнце находится в одной из двух фокальных точек эллипса. Отрезок прямой, соединяющий Солнце и планету, отсекает равные площади за равные промежутки времени. Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит.

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятьюправильными многогранниками классической древнегреческой геометрии. (Правильный многогранник — объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами — Сатурна и Юпитера — он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса — тетраэдр (правильный четырехгранник) и т. д.* Шесть сфер планет, пять вписанных между ними правильных многогранников — казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. По меткому замечанию современного британского биолога Дж. Холдейна (J. B. S. Haldane), «идея Вселенной как геометрически совершенного произведения искусства оказалась еще одной прекрасной гипотезой, разрушенной уродливыми фактами». Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.

Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге (Tycho Brahe, 1546–1601), Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника (см. Принцип Коперника) и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. Наша задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона!

Первый закон** описывает геометрию траекторий планетарных орбит. Возможно, вы помните из школьного курса геометрии, что эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек — фокусов — равна константе. Если это слишком сложно для вас, имеется другое определение: представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, — это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно — Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений — главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было, я бы сказал, прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности (причем это заблуждение мне и сегодня приходится раз за разом развеивать среди своих студентов). Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам — подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

Второй закон описывает изменение скорости движения планет вокруг Солнца. В формальном виде я его формулировку уже приводил, а чтобы лучше понять его физический смысл, вспомните свое детство. Наверное, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты кружатся вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета. Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать всё сначала — накапливать данные наблюдений, затем анализировать их и стараться выявить закономерности. То есть у него просто не было бы оснований полагать, что другая планетная система подчиняется тем же законам, что и Солнечная система.

Один из величайших триумфов классической механики Ньютона как раз и заключается в том, что она дает фундаментальное обоснование законам Кеплера и утверждает их универсальность. Оказывается, законы Кеплера можно вывести иззаконов механики Ньютоназакона всемирного тяготения Ньютона и закона сохранения момента импульса путем строгих математических выкладок. А раз так, мы можем быть уверены, что законы Кеплера в равной мере применимы к любой планетной системе в любой точке Вселенной. Астрономы, ищущие в мировом пространстве новые планетные системы (а открыто их уже довольно много), раз за разом, как само собой разумеющееся, применяют уравнения Кеплера для расчета параметров орбит далеких планет, хотя и не могут наблюдать их непосредственно.

Третий закон Кеплера играл и играет важную роль в современной космологии. Наблюдая за далекими галактиками, астрофизики регистрируют слабые сигналы, испускаемые атомами водорода, обращающимися по очень удаленным от галактического центра орбитам — гораздо дальше, чем обычно находятся звезды. По эффекту Доплера в спектре этого излучения ученые определяют скорости вращения водородной периферии галактического диска, а по ним — и угловые скорости галактик в целом (см. также Темная материя). Меня радует, что труды ученого, твердо поставившего нас на путь правильного понимания устройства нашей Солнечной системы, и сегодня, спустя века после его смерти, играют столь важную роль в изучении строения необъятной Вселенной.

* Между сферами Марса и Земли — додекаэдр (двенадцатигранник); между сферами Земли и Венеры — икосаэдр (двадцатигранник); между сферами Венеры и Меркурия — октаэдр (восьмигранник). Получившаяся конструкция была представлена Кеплером в разрезе на подробном объемном чертеже (см. рисунок) в его первой монографии «Космографическая тайна» (Mysteria Cosmographica, 1596). — Примечание переводчика.

** Исторически сложилось так, что законы Кеплера (подобно началам термодинамики) пронумерованы не по хронологии их открытия, а в порядке их осмысления в научных кругах. Реально же первый закон был открыт в 1605 году (опубликован в 1609 году), второй — в 1602 году (опубликован в 1609 году), третий — в 1618 году (опубликован в 1619 году). — Примечание переводчика.

32!

Метод

Астрономические объекты

Измеряемые расстояния

Радиолокационный

Планеты

В пределах Солнечной системы

Угломерный (тригонометрические параллаксы)

Планеты, ближайшие звёзды

До 100 пк

Угломерный (по угловым размерам газовых туманностей)

Галактики

До 10 Мпк

Фотометрический (на основе звёздных величин)

Звёзды спек тральных классов А-К

До 1 КПК

Звёзды спек тральных классов В-0

До 10 Кпк

Красные гиганты

До З Мпк

Шаровые скопления

До 8 Мпк

Ярчайшие сверхгиганты

До 10 Мпк

Сверхновые

До 500 Мпк

Галактики

До З Гпк

Доплера (на основе красного смещения)

Далёкие галактики, радиогалактики и квазары

До 300 Гпк

*Линейные размеры наибольших туманностей в галактиках почти одинаковы.

 

выписки из учебных источников, группировка, комментарии,

А.Мезенцев

Звезды. Расстояние до звезд и способы его определения. Метод параллакса.

Для сравнительно близких звезд, удаленных на расстояние, не превышающие нескольких десятков парсек, расстояние определяется по параллаксу способом, известным уже двести лет. При этом измеряют ничтожно малые угловые смещения звезд при их наблюдении с разных точек земной орбиты, то есть в разное время года. Параллаксы даже самых близких звезд меньше 1". С понятием параллакса связано название одной из основных единиц в астрономии – парсек. Парсек – это расстояние до воображаемой звезды, годичный параллакс которой равен 1":   где R – расстояние в парсеках, p – годичный параллакс в секундах. 1 парсек = 3,26 светового года = 206 265 астрономических единиц = 3,083∙1016м. Спутник «Гиппарх» определял расстояния до звезд с высокой точностью. Метод параллакса является на данный момент наиболее точным способом определения расстояний до звезд, однако он не применим к звездам, отстоящим от нас на расстояние больше, чем 300 пк. Слишком малые смещения положения звезд надо измерять – меньше одной сотой доли секунды дуги! Расстояние до звезды можно получить и другим путем, например, по наблюдениям периода цефеид. Расстояние до звезд можно оценить методом спектрального параллакса. График зависимости отношения интенсивности определенных пар спектральных линий от абсолютной звездной величины звезд строится по интенсивности линий в спектрах тех звезд, расстояние до которых надежно определено. Поэтому по спектральным линиям можно оценить светимость звезды, а затем найти расстояние до нее.

Метод тригонометрических параллакса

Схема возникновения годичного параллакса

Параллакс — это угол, возникающий благодаря проекции источника на небесную сферу. Различают два вида параллакса: годичный и групповой[7].

Годичный параллакс — угол, под которым был бы виден средний радиус земной орбиты из центра масс звезды. Из-за движения Земли по орбите видимое положение любой звезды на небесной сфере постоянно сдвигается — звезда описывает эллипс, большая полуось которого оказывается равной годичному параллаксу. По известному параллаксу из законов евклидовой геометрии расстояние от центра земной орбиты до звезды можно найти как[7]:

где приближённое равенство записано для малого угла (в радианах). Данная формула хорошо демонстрирует основную трудность этого метода: с увеличением расстояния значение параллакса убывает по гиперболе, и поэтому измерение расстояний до далеких звезд сопряжено со значительными техническими трудностями.

Суть группового параллакса состоит в следующем: если некое звёздное скопление имеет заметную скорость относительно Земли, то по законам проекции видимые направления движения его членов будут сходиться в одной точке, называемой радиантом скопления. Положение радианта определяется из собственных движений звёзд и смещения их спектральных линий, возникшего из-за эффекта Доплера. Тогда расстояние до скопления находится из следующего соотношения[8]:

где μ и Vr — соответственно угловая (в секундах дуги в год) и лучевая (в км/с) скорость звезды скопления, λ — угол между прямыми Солнце—звезда и звезда—радиант, а r — расстояние, выраженное в парсеках. Только Гиады имеют заметный групповой параллакс, но до запуска спутника Hipparcosтолько таким способом можно откалибровать шкалу расстояний для старых объектов[7].

Масштаб солнечной системы

На протяжении двух тысячелетий после Аристарха Самосского считалось, что расстояние от Земли до Солнца в 19 раз больше расстояния от Земли до Луны. И хотя цифра эта была преуменьшена в 20 раз, Коперник смог установить относительные масштабы солнечной системы, а Кеплер- открыть законы движения планет. Однако, без точных данных о расстояниях до Луны, Солнца и планет невозможно было бы установить закон всемирного тяготения (Ньютон), создать теорию гравитации и динамически обосновать гелиоцентрическую систему Мира. Случилось так, что масштабы солнечной системы были установлены как раз в начале творческой деятельности Ньютона.

Чтобы определить расстояние от Земли до Солнца, а следовательно, узнать все расстояния в солнечной системе, достаточно было измерить расстояние от Земли до любой планеты, например, до Марса. В самом деле, по Копернику, расстояние от Солнца до Марса составляет 1.52 а.е. Отсюда следует, что в момент противостояния расстояние от Земли до Марса равно 1.52-1.00=0.52 а.е. А если известна часть астрономической единицы в километрах, милях или лье- неважно, в каких единицах,- то нетрудно найти и полную ее величину, то есть расстояние от Земли до Солнца. (О современных методах определения расстояний в космосе.

В 1671- 1673 годах французские астрономы Джованни Доминик Кассини (1625- 1712) и Жан Рише (год рожд. неизв. - 1696) произвели необходимые измерения. План Кассини и Рише состоял в том, чтобы одновременно, но из разных мест, наблюдать Марс среди звезд. Рише отправился наблюдать Марс в Южную Америку в столицу Французской Гвианы г. Кайенну (Cayenne)- место, куда французы ссылали преступников. Из-за жаркого, влажного и очень нездорового климата Кайенны такая ссылка считалась равносильной казни. Мэтр Кассини- первый директор Парижской обсерватории- остался в Париже и вел наблюдения с помощью телескопа своей обсерватории.

Если наблюдать Марс из двух разных пунктов на Земле (например, Париж и Кайенна), его положение на фоне далеких звезд окажется несколько смещенным. Это смещение называется параллактическим, а метод, использованный Кассини и Рише,- методом суточного параллакса. По величине параллактического смещения и известному расстоянию между пунктами наблюдений нетрудно определить расстояние Марса от Земли, а затем и установить величину астрономической единицы.

Рис.14: Метод суточного параллакса

На рис.14 изображена схема, поясняющая метод суточного параллакса. Измеряется дуга P'C' между двумя положениями Марса на небесной сфере. Расстояние от Земли до Марса много меньше расстояния до звезд, поэтому можно считать, что угол P'MC' равен дуге P'C'. Углы P'MC' и PMC равны как вертикальные. В прямоугольном треугольнике PMO известны острый угол p- он называется параллакс- и катет PO, имеющий длину d. Очевидно, длина гипотенузы (расстояние до Марса) находится как

Кассини и Рише определили величину праллактического смещения и, рассчитав расстояние до Марса, вычислили значение астрономической единицы. Так было найдено, что расстояние от Земли до Солнца равно 25 млн морских лье или приблизительно 140 млн км 10. Эта цифра всего на 6% меньше истинного значения.

Важнейшим и немедленным следствием результатов Кассини и Рише стало определение скорости света, выполненное датским астрономом Оле Рёмером, который с 1671 по 1681г., то есть во время описанных измерений, работал в Парижской обсерватории рядом со знаменитым Кассини и был в гуще событий.

Коротко расскажем о первом в истории естествознания определении величины скорости света. Кассини наблюдал спутники Юпитера, открытые Галилеем. Он составил таблицы движения этих спутников вокруг Юпитера и моментов затмений этих спутников Юпитером. Затмения происходят очень часто - например, для первого из галилеевых спутников Ио затмения повторяются каждые 42.5 часа (период обращения Ио вокруг Юпитера). Кассини в своих таблицах указал моменты затмений на многие месяцы вперед. Когда он через несколько месяцев повторил свои наблюдения, то обнаружил, что моменты затмений спутников запаздывают относительно расчетных (приведенных в таблице) на целых 20 минут.

Узнав о наблюдениях Кассини, Рёмер в 1676г. объяснил эту кажущуюся неравномерность движения спутников тем, что во втором случае свету требуется лишних 20 мин для прохождения диаметра орбиты Земли (в действительности, свет проходит это расстояние за 1000 сек или 16 мин 40 сек). Действительно, оказалось, что в первый раз наблюдения проводились, когда Земля была ближе всего к Юпитеру (противостояние), а во второй раз- когда Земля удалилась от Юпитера на максимальное расстояние (соединение). На рис. приведена схема, иллюстрирующая рассуждения Рёмера. Рёмер не привел конкретного значения скорости света; более поздние оценки дали c=215000км/с (современное значение 299792км/с).

Рис.15: Определение скорости света по Рёмеру

Так, в результате измерений положений Марса, выполненных Кассини и Рише, было не только найдено расстояние до Солнца и планет, но также установлена конечность скорости света и вычислено её значение.

10 1 морское лье составляет 1/20 часть от длины 1 земного меридиана, и равняется 5,56 км. 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]