Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФОЭ.doc
Скачиваний:
2
Добавлен:
15.09.2019
Размер:
475.65 Кб
Скачать

Вопрос 10

Акце́птор — в физике твёрдого тела (см. также полупроводники) примесь в кристаллической решётке, которая отдаёт кристаллу дырку. Вводится при ковалентном типе связи.

Акцепторы бывают однозарядными и многозарядными. Например, в кристаллах элементов IV группы периодической системы элементов(кремния, германия) элементы III группы (алюминий, индий, галлий) являются однозарядными акцепторами. Поскольку элементы третьей группы имеют валентность 3, то три электрона образуют химическую связь с тремя соседними атомами кремния в кубической решётке, а электрона для образования четвёртой связи недостает. Однако при ненулевой температуре с определённой вероятностью четвёртая связь образуется. Электрон, который его образует, имеет энергию на несколько миллиэлектрон-вольт выше энергии потолка валентной зоны. При этом в валентной зоне образуется так называемая дырка, которая может свободно двигаться по кристаллу, и, таким образом, участвовать в электропроводности кристалла.

Для оценки энергии связи дырок на акцепторах часто используют модель водородоподобного центра, в которой энергия связи находится из решения уравнения Шредингера для атома водорода с учетом того, что дырка в кристалле — квазичастица, эффективная масса которой отличается от массы свободного электрона, а также того, что дырка движется не в вакууме, а в среде с определённой диэлектрической проницаемостью. Более строгий расчет энергии основного и возбужденных состояний акцепторных уровней требует учета локального потенциала примеси, а также наличия во многих полупроводниках нескольких ветвей у закона дисперсии дырок (легкие и тяжелые дырки). Акцепторы, энергия связи которых близка к энергии, оцененной из водородоподобной модели, называются мелкими акцепторами.

Обычно эффективные массы дырок малы в сравнении с массой свободного электрона. Кроме того полупроводники имеют достаточно большие значения диэлектрической проницаемости (порядка 10), так что энергия акцептора примерно в 100—1000 раз меньше энергии электрона в атоме водорода. Именно благодаря этим особенностям акцепторные уровни во многих полупроводниках ионизованы уже при комнатной температуре. Учитывая этот факт, волновые функции мелких акцепторных уровней простираются на много периодов кристаллической решётки, имея радиус намного больше чем радиус Бора.

Донор в физике твёрдого тела (см. также полупроводники) -- примесь в кристаллической решётке, которая отдаёт кристаллу электрон. Вводится при ковалентном типе связи. Бываютоднозарядные и многозарядные доноры. Например, в кристаллах элементов IV группы периодической системы элементов (кремнии, германии) однозарядными донорами являются элементы V группы: фосфор, мышьяк, сурьма. Так как элементы пятой группы обладают валентностью 5, то четыре электрона образуют химическую связь с четырьмя соседними атомами кремния в решётке, а пятый электрон оказывается слабо связанным (энергия связи порядка нескольких сотых электрон-вольта) и образует так называемый водородоподобный примесный центр, энергию которого просто оценить из решения уравнения Шрёдингера для атома водорода, принимая во внимание, что электрон в кристалле — квазичастица и егоэффективная масса отличается от массы электрона, а также, что электрон движется не в вакууме, а в среде с некой (порядка 10) диэлектрической проницаемостью.

Схематическое изображение кремнияс донорной примесью фосфора

Атомы донорных примесей, которые вводятся в полупроводник и отдают ему один или несколько электронов, создают избыток электронов и формируют так называемый полупроводник n-типа. Атом донора удерживает лишний электрон слабо, и при достаточной температуре этот электрон может перейти в зону проводимости и участвовать в электропроводности кристалла.

Дополнительный электрон, связанный с атомом донора, образует так называемый донорный уровень в запрещенной зоне. Донорный уровень называется мелким, если его энергия (отсчитываемая от дна зоны проводимости) сравнима с характерной энергией теплового движения при комнатной температуре  , где   - температура, а   - постоянная Больцмана. Эта энергия составляет примерно 26 мэВ. Мелкими донорами могут быть не только примесные атомы, но и комплексы структурных дефектов (например т.н. термодоноры в кремнии). Многиепримеси и точечные дефекты, (например золото и медь в кремнии, вакансии, являются глубокими донорами. В отличие от мелких доноров, они слабо влияют на удельное электросопротивление, но существенно снижают время жизни неравновесных носителей заряда. Лишний электрон притягивается кулоновской силой к иону донора, который имеет избыточный положительный заряд по сравнению с атомами полупроводника. Вследствие такого притяжения донорные уровни образуют водородоподобную серию с энергиями, которые можно рассчитать по формуле

где   - энергия донорного уровня,   - энергия дна зоны проводимости,   - постоянная Ридберга (примерно 13,6 эВ),   - эффективная масса электрона,   - масса свободного электрона,   - диэлектрическая проницаемость полупроводника, а n - целое число, которое может принимать значения от единицы до бесконечности, но практически важны лишь несколько самых низких уровней с малыми n.

Благодаря тому обстоятельству, что эффективные массы электронов в полупроводниках малы, а диэлектрические проницаемости довольно большие (порядка 10), энергия донорных уровней мала, а радиусы локализации соответствующих волновых функций довольно большие ~10 нм, распространяются на несколько периодов кристаллической решетки.