Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kvantovaya_peredelannaya.docx
Скачиваний:
9
Добавлен:
15.09.2019
Размер:
184.15 Кб
Скачать

Закон р/акт распада.

Радиоакт.распад- естеств-е радиоакт-е превращ-е ядер, происходящее самопроизвольно.

р/акт распад ведет к постепенному уменьшению числа атомов р/акт излучения.

Пусть dN-число атомов, распадающихся за время dt:

dN =-λNdt (1), где λ-постоянная распада (минус указывает на уменьшение числа атомов).

dN/N характе-ет относительное уменьшение

dt атомных ядер в единицу времени.

dN/N = - λdt → ln N = -λt + ln с (2), ln c-определ-ся из нач-ых условий: t=0 → N=N0/

N = N0 e-λt (3) – закон р/акт распада.

N0-число атомов р/акт элемента в нач-ый момент времени, N-число атомов этого же элемента, оставшихся к моменту времени t.

Для характер-ки быстроты

рапада вводят понятие периода

полураспада (время, в течение

которого распадается половина

атомов ядер р/акт вещ-ва).

Т = ln 2/λ = 0,693/λ

Время жизни р/акт атома – величина обратно пропорц-ая постоянной распада:

τ = 1/λ = Тln2 =1,44 Т

Активность р/акт распада – число атомных распадов, совершающихся в р/акт элементе за един-цу времени:

а = |dNdt| = λ N.

Продукт р/акт распада сам может бать р/акт и проходить несколько промежуточных стадий, образуя цепочку р/акт элементов, заканчивающуюся стабильным элементом. Такая цепочка элементов наз-ся семейством:

1-ое семейство урана:

2-ое сем-во нептуния:

3-е сем-во актиноурана:

4-ое сем-во тория:

К.№9 элементарные частицы и фундаментальные взаимодействия.

Микрочастицами наз-ют элемент-ые частицы (электроны, протоны, нейтроны, фотоны и др. простые частицы), а также сложные частицы, образованные из сравнительно небольшого числа элементарных частиц(молекулы, атомы, ядра атомов т.п.). также под элемент-ми частицами можно понимать такие микрочастицы, внутреннюю структуру которых на современном уровне развития физики нельзя представить как объединение др. частиц. Во всех наблюд-ся до сих пор явл-ях каждая иакая частица ведет себя как единое целое. Элементарные частицы могут превр-ся в др. друга. Для того, чтобы объяснить св-ва и поведение элемт-х частиц, их прихся наделить, кроме массы, электрич-го заряда и спина, рядом дополн-ых, характерных для них величин (квантовых чисел: n-главное кв. число(опред-ее энергию), l-орбит-ое кв. число(опред-ее величину орбит-го мом. импульса), m-магн-ое кв. число(опред-ее величину проекции орб-го мом. на направление внешнего магн/поля), ms – спиновое кв. число(опред-ее проекцию спинового мом. на направл-ие внешнего м/поля)).

Известны 4 вида взаимод-ия между элемент-ми частицами:

1. сильное – обеспеч-ет связь нуклонов в ядре

2. электр/магн

3. слабое – ответственно за все виды β-распада ядер, за многие распады элем-х частиц, а также за все процессы взаимод-я нейтринос вещ-ом.

4. гравитационное – явл-ся универсальным, ему подвержены без искл-ия элемент-ые частицы.

Элемент-ые частицы подразделяют на 4 класса:

1. фотоны – γ (кванты Эл/магн поля), участвуют в Эл/м взаимод-ях, но не обладают сильным и слабым взаимод-ми.

2. лептоны – к их числу отно-ся частицы не облад-е сильным взаимод-ем: мюоны, электроны, электронные нейтрино. Все лептоны облад-т слабым взаимод-ем.

3. мезоны – сильно взаимод-ие нестабильные частицы, не несущие так называемого барионного заряда(П-мезоны, К-мезоны. Они облад-ют слабым, сильным взаимод-ем, проявляющимся при взаимод-ии их между собой, а также при взаимод-ии между мезонами и барионами.

4. барионы – объед-ет в себе нуклоны (p,n) и нестабильные частицы смассой больше массы нуклонов. Все барионы облад-ют сильным взаимод-ем → активно взаимод-ют с атомными ядрами.

Классификация

По величине спина

Все элементарные частицы делятся на два класса:

бозоны — частицы с целым спином (например, фотон, глюон, мезоны).

фермионы — частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино);

По видам взаимодействий

Элементарные частицы делятся на следующие группы:

Составные частицы

адроны — частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:

мезоны — адроны с целым спином, то есть являющиеся бозонами;

барионы — адроны с полуцелым спином, то есть фермионы. К ним, в частности, относятся частицы, составляющие ядро атома, — протон и нейтрон.

Фундаментальные (бесструктурные) частицы

лептоны — фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.

кварки — дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.

калибровочные бозоны — частицы, посредством обмена которыми осуществляются взаимодействия:

фотон — частица, переносящая электромагнитное взаимодействие;

восемь глюонов — частиц, переносящих сильное взаимодействие;

три промежуточных векторных бозона W+, W− и Z0, переносящие слабое взаимодействие;

гравитон — гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц.

Адроны и лептоны образуют вещество. Калибровочные бозоны — это кванты разных типов взаимодействий.

Кроме того, в Стандартной модели с необходимостью присутствует хигксовский бозон, который, впрочем, пока ещё не обнаружен экспериментально.

Методы регистрации частиц: в общем частицы обнаруживаются по ионизации, вызванной порожденными ими заряженными частицами. Приборы, применяемые для регистрации иониз-х частиц, подраздел-ся на 2 группы: 1 – устр-ва, которые регист-ют факт пролета частицы, также можно судить об ее энергии; 2 – трековые приборы(приборы, позвол-ие наблюдать следы частиц в вещ-ве).

К числу регист-их приборов относ-ся ионизац-е камеры и газоразрядные счетчики, а также черенковые счетчики, сцентилляционные счетчики и полупроводниковые счетчики.

К числу трековых приборов отно-ся камера Вильсона, диффузионные камеры, пузырьковые, искровые и эмульсионные.

Камера Вильсона: 1912г. Дорожка из ионов, проложенная летящей заряженной частицей, стан-ся видимой в камере, потому что на ионах происходит конденсация пересыщенных паров какой-либо жидкости. Пересыщение достиг-ся за счет внезапного охлаждения, вызываемого резким (адиабат-м) расширением рабочей смеси, состоящей из неконденсирующегося газа (гелий, азот) и паров воды, этилового спирта и т.п. в этот же момент производ-ся с нескольких точек фото-ие рабочего объема камеры. Это позволяет воссоздать пространственную картину зафиксированного явления.

Диф-ая камера: также рабочем вещ-ом явл-ся пересыщенный пар, но состояние пересыщения создается не адиабат-ким расширением, а рез-те диффузии паров спирта (наход-ся при Т~100С) от крышки камеры к охлажденному твердой углекислотой дну. Недалеко от дна возникает слой пересыщенного пара, в этом слое образ-ся треки. Эта камера работает непрерывно.

Пузырьковая камера: 1952г Д.А.Глезер. вместо Перес-х паров – прозрачная перегретая жидкость(т.е. жидкость нах-ся под внешним давлением, меньшим давления ее насыщенных паров).пролетевшая через камеру иониз-я частица вызывает бурное вскипание жидкости, вследствие чего след частицы оказ-ся обозначенным цепочкой пузырьков пара – образ-ся трек. Камера работает циклами.

К. 10. Твердые тела.

Любое твердое тело представляет собой систему многих микрочастиц. Существует два способа описания систем многих частиц: термодинамическое и статистическое описание.

При термод-ом описании систему рассматривают как макроскопич-ую систему, не интересуясь частицами. Такая система характериз-ся макропараметрами: р, Т, V. Этот способ не дает возможности исследовать свойства системы, которые зависят от микроструктуры вещества (проводимость).

Статистич-ий метод позволяет найти наиболее вероятные распределения частиц системы по координатам, импульсам, энергиям. Математически задача стат-го метода сводится к описанию функции распределения частиц(ФР). ФР характер-ет плотность вероятности распределения частиц системы по фазовому пространству координат и импульсов (для классич-х частиц) и по квантовым состояниям (для кван-х частиц).

Характер ФР зависит от индивидуальных свойств частиц системы. Идеальный газ подчиняется распределению Максвелла-Больцмана, а электронный газ – распределению Ферми-Дирака.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]