Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Л раб 6 Основы электрохимии 12.doc
Скачиваний:
7
Добавлен:
04.09.2019
Размер:
293.38 Кб
Скачать

Теория гальванических элементов Гальванические элементы. Электродный потенциал металла

Согласно гидратационной теории гальванических элементов, при погружении металла в воду ионы его поверхностного слоя под действием полярных молекул воды отрываются, и в гидратированном состоянии переходят в раствор. В самом металле появляется избыток электронов, придающих ему отрицательный заряд.

В результате формирования двойного электрического слоя между металлом и окружающей его водной средой создается некоторая разность потенциалов, которую принято называть электродным потенциалом металла (φ0). По мере перехода ионов металла в водную среду увеличивается отрицательный заряд металла и положительный заряд раствора. Поэтому все чаще ионы металла притягиваются обратно на металлическую пластинку. Наступает равновесие:

Возьмем два сосуда. В один из них, содержащий раствор сульфата цинка, опустим цинковый электрод, а в другой, содержащий раствор сульфата меди - медный электрод. Растворы соединим с помощью трубки, заполненной раствором электролита (насыщенным раствором KCl).

Металл, электродный потенциал) которого более положительный, будет катодом. Металл, электродный потенциал ) которого более отрицательный – анодом. На катоде всегда протекает процесс восстановления, а на аноде – окисление.

электроды

Заряд во внешней цепи, φ

Процессы, протекающие на электродах

анод

Более отрицательный

окисление

а

о

о

катод

Более положительный

восстановление

к

п

в

Гальванический элемент с применением соединительной трубки

Электродный потенциал цинка меньше электродного потенциала меди, поэтому в данном гальваническом элементе цинковый электрод будет анодом, а медный - катодом.

φ0 Zn2+/ Zn = - 0,76 В,

φ0 Cu2+/Cu =+0,34 В.

Такая схема означает, что цинковый электрод опущен в раствор его соли, а медный электрод – в раствор соли меди. Между растворами расположена пористая перегородка или соединительная трубка.

Причиной возникновения электрического тока в гальваническом элементе, т.е. причиной передвижения электронов по внешней цепи, является разность потенциалов взятых электродов

Гальванический элемент изображается электрохимической схемой:

Одна черта обозначает поверхность раздела между электродом и раствором, две черты – пористую перегородку или соединительную трубку между растворами. Цинковый электрод, с которого поступают электроны, считается отрицательным, а медный – положительным. Названия электродам даются в соответствии с протекающими на них процессами. Анодом называется электрод, на котором протекает окислительный процесс. Катодом - электрод, на котором протекает восстановительный процесс.

Происходящие в гальваническом элементе процессы можно выразить электродными уравнениями:

Анод: Zn0-2e → Zn2+, окисление

в-ль

Катод: Cu2+ + 2e→ Cu0, восстановление

о-ль

Используя электродные потенциалы (φ), можно определить направление тока в гальваническом элементе и вычислить его электродвижущую силу (Е). При вычислении ЭДС гальванического элемента из потенциала катода вычитают потенциал анода.

Е0= φ0о-ль - φ0в-ль или Е0= φ0катода- φ0анода (в стандартных условиях);

Е= φо-ль - φв-ль или Е= φкатода- φанода (в реальных условиях).

Потенциал металла φ вычисляется по уравнению Нернста:

φ МеZ+/ Me = φ0 МеZ+/ Me+ RT/zF*ln[МеZ+] ;

где R – универсальная газовая постоянная;

T – температура по абсолютной шкале;

F – число Фарадея;

n – валентность металла (зарядность иона)

Преобразовав данное уравнение для стандартных условий, получают:

φ МеZ+/ Me = φ0 МеZ+/ Me + 0,059/z*lg [МеZ+] .

Если Е>0, то электрохимический процесс вероятен, т.е. в гальваническом элементе будет протекать электрический ток.