Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2.8 Лопатин.doc
Скачиваний:
13
Добавлен:
31.08.2019
Размер:
654.85 Кб
Скачать

СЕВАСТОПОЛЬСКИЙ НАЦИОНАЛЬНЫЙ ИНСТИТУТ ЯДЕРНОЙ ЭНЕРГИИ И ПРОМЫШЛЕННОСТИ

Кафедра «Эксплуатация электрических станций»

«УТВЕРЖДАЮ»

Заведующий кафедрой ЭЭС

_______________ А.В. Углов

«____» _________ 200 г.

ЛЕКЦИЯ

Тема: Индукционные реле направления мощности с четырехполюсной магнитной системой

Учебная цель: Ознакомить студентов с основными типами индукционных реле направления мощности.

Вопросы:

  1. Индукционные реле с четырехполюсной магнитной системой.

  2. Индукционное реле направления мощности.

  3. Принцип действия и векторная диаграмма реле направления мощности.

  4. Три типа реле направления мощности.

  5. Основные характеристики реле направления мощности.

  6. Разновидности индукционных реле направления мощности.

Литература: 1. Андреев В.А. «Релейная защита и автоматика систем электроснабжения», -М.: Высшая школа. 1991г. – 496с.

2. Беркович М.А. «Основы техники релейной защиты». – М.: Энергоатомиздат, 1984г. – 376с.

3. «Реле защиты» –Алексеев В.С. и др. –М. :Энергия, 1976г, - 496с.

СЕВАСТОПОЛЬ

2003

    1. Индукционные реле направления мощности с четырехполюсной магнитной системой

      1. Индукционные реле с четырехполюсной магнитной системой.

      2. Индукционные реле направления мощности.

      3. Принцип действия и векторная диаграмма реле направления мощности.

      4. Три типа реле мощности.

      5. Основные характеристики реле направления мощности.

      6. Разновидности индукционных реле направления мощности.

      7. Реле направления мощности серий РБМ –171 и РБМ – 271.

      8. Реле направления мощности серий РБМ – 177, РБМ – 178, РБМ – 277, РБМ – 278.

      1. Индукционное реле с четырехполюсной

магнитной системой

Действие индукционного реле с четырехполюсной магнитной системой основано на общем принципе действия индукционного реле, т.е. на («перекрестном») взаимодействии магнитных потоков с наведенными ими токами индукции в подвижной системе.

Четырехполюсное ИР имеет четыре одинаковых полюса, расположенных в одной плоскости и объединенных общим магнитопроводом – ярмом (рисунок 8.1). Между полюсами и центральным сердечником в равномерном кольцевом зазоре расположен полый тонкостенный алюминиевый цилиндр – ротор, который может поворачиваться вокруг своей оси, установленной в подшипниках. Магнитная система имеет две взаимно перпендикулярные оси симметрии.

Реле обычно имеет две обмотки. Одна обмотка расположена на ярме, другая – на двух противоположных полюсах. Обмотка ярма Wя состоит из четырех одинаковых катушек .Обмотка полюсов состоит из двух катушек .

При обтекании обмоток Wя и Wп токами Iя и Iп возникают магнитодвижущие силы Fя1, Fя2, Fя3, Fя4 и Fп1, Fп2. Из симметрии обмоток ярма и полюсов следует:

Fя1 = Fя2 = Fя3 = Fя4 = (8.1)

и

(8.2)

Рисунок 8.1 Четырехполюсная магнитная система.

При показанном на рисунке 8.1 включении обмоток магнитный поток, наводимый обмоткой ярма проходит только через полюсы I – I и равен:

(8.3)

Z mя – полное магнитное сопротивление одной половины ярма;

Z mп - полное магнитное сопротивление одного полюса;

Поток, наведенный обмоткой полюсов Wп, проходит только через полюсы II – II и равен

(8.4)

Оба эти потока Фя и Фп сдвинуты в пространстве на 90º, но, главное, эти потоки, будучи сдвинутыми во времени один относительно другого на угол Ψ, не равный нулю (скажем, в пределах от 0º до 90º), создают на роторе вращающий момент Мврр).

Каждые два соседних полюса создают момент в соответствии с выражением:

(8.5)

g p – эквивалентная проводимость ротора;

Суммарный рабочий момент вращения будет в 4 раза больше, т.е.

(8.6)

Подставив выражения 8.2 , 8.3 , 8.4 в выражение 8.6 получим

(8.7)

В силу симметрии магнитной системы и обмоток потери в стали полюсов и в каждой четверти ярма примерно одинаковы, поэтому потоки Фя и Фп будут отставать от токов Iя и Iп на одинаковые углы . Отсюда следует, что угол между векторами потоков можно считать равным углу между векторами токов .

Учитывая последнее, уравнение 8.7 можно записать в виде:

, (8.8)

где

Кm = (8.9) (при f = 50гц и зазоре у полюсов 1мм Кm = 1,2

При подаче на обмотку ярма напряжение Up , опережающего ток в полюсной обмотке на угол , угол между токами в обмотках реле будет равен

(8.10)

Здесь угол - угол между напряжением, подводимым к зажимам реле от ТН, подключенного к защищаемой сети, и током от измерительного ТТ. Угол - угол внутреннего сдвига реле; он определяется полным сопротивлением контура ярма.

С учетом 8.10 можно записать

где (8.11)

Zz – полное сопротивление контура ярма;

Iп - мощность, подводимая к реле (Sp).

В заключение первого вопроса сделаем следующие

выводы:

  1. При протекании синфазных токов по обмоткам Wя и Wп четырехполюсной индукционной системы в магнитопроводе возникают синфазные потоки , которые не вызывают вращающего момента.

  2. При наличии фазового сдвига между потоками в полюсах I и II (рисунок 8.1) возникает вращающий момент, величина которого пропорциональна величинам токов в обмотках и зависит от сдвига фаз . При При Мвр максимален.

  3. Направление действия вращающего момента Мвр определяется следующим образом:

а) используя рисунок 8.1, выберем два рядом расположенных полюса, например, I и II.

б) Определим опережающий поток. Пусть Фя отстает от потока Фп ( ) . Тогда от взаимодействия потоков Фп и Фя с контурными токами, наведенными этими потоками, п оявляются электромагнитные силы, образующие Мвр.

Момент вращения направлен от оси опережающего потока к оси отстающего, Так во втором квадранте оба потока «входят в ротор». Фп опережает, Фя отстает. Следовательно, силы образуют вращающий момент, действующий по часовой (для рассматриваемого случая) стрелке. В первом квадранте картина несколько иная – поток Фя “входит в ротор”, Фп “выходит из ротора”. Направление Мвр в первом квадранте определится по правилу ”от оси отстающего к оси опережающего потока”. Таким образом, все четыре составляющие результирующего Мвр направлены в одну сторону.

Картина изменится, если поток Фя будет отставать от потока Фп на угол больше 180º . Отставание потока Фя на угол , лежащий в пределах от 180º до 360º равносильно его опережению потока Фп на угол , лежащий в пределах от 0º до 180º. Тогда, рассуждая как и прежде и воспользовавшись тем же правилом, увидим, что Мвр теперь направлен в противоположную сторону, т.е. против часовой стрелки. Если ограничить поворот ротора в одну сторону с помощью упора 1 и пружины 2 (рисунок 8.2), то реле будет действовать и замыкать контакты 3 лишь в том случае, если один поток опережает другой на угол , лежащий в пределах от 0º до 180º.

Рисунок 8.2 К принципу действия реле направления мощности.

В этом случае Мвр направлен в сторону отстающего потока, т.е. по часовой стрелке.

Если фазовый сдвиг будет лежать в пределах от 180º до 360º, то возникнет Мвр ,направленный в обратную сторону, и реле действовать не будет. Это свойство ТР с четырехполюсной магнитной системой используется в реле направления мощности – в реле, которые реагируют на изменение знака мощности, подводимой к реле.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]