Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ Лавриненко Ратникова_.doc
Скачиваний:
53
Добавлен:
29.08.2019
Размер:
2.16 Mб
Скачать

4.2.5. Физический вакуум

Вакуум в переводе с латинского (vacuum) означает пустоту.

Еще в античности был поставлен вопрос о том, пусто мировое пространство или заполнено некой материальной средой, чем-то, отличающимся от пустоты.

Согласно философской концепции великого древнегреческого философа Демокрита, все вещества состоят из частиц, между которыми находится пустота. Но согласно философской концепции другого не менее знаменитого древнегреческого философа Аристотеля, в мире нет ни малейшего места, где не было бы «ничего». Эта среда, пронизывающая все пространства Вселенной, была названа эфиром.

Понятие «эфира» вошло в европейскую науку. Великий Ньютон понимал, что закон всемирного тяготения будет иметь смысл, если пространство обладает физической реальностью, т.е. представляет собой среду, обладающую физическими свойствами. Он писал: «Мысль о том... чтобы одно тело могло воздействовать на другое через пустоту на расстоянии, без участия чего-то такого, что переносило бы действие и силу от одного тела к другому, — представляется мне нелепой»1.

В классической физике не было экспериментальных данных, которые подтверждали бы существование эфира. Но не было и данных, которые бы опровергали это. Авторитет Ньютона, способствовал тому, что эфир стал рассматриваться в качестве важнейшего понятия физики. Под понятие «эфир» стали подводить все, что вызывалось гравитационными и электромагнитными силами. Но поскольку другие фундаментальные взаимодействия до возникновения атомной физики практически не изучались, то с помощью эфира брались объяснять любые явления и любой процесс.

Эфир должен был обеспечивать действие закона всемирного тяготения; эфир оказывался средой, по которой идут световые волны; эфир нес ответственность за все проявления электромагнитных сил. Развитие физики заставляло наделять эфир все новыми и новыми противоречивыми свойствами.

Опыт Майкельсона, величайший из всех «отрицательных» опытов в истории науки, привел к выводу, что гипотеза неподвижного мирового эфира, на которую классическая физика возлагала боль-

1 Цит. по: Ливанова А Три судьбы постижения мира. Жизнь замечательных идей. — М: Знание, 1969. - С. 122.

122

шие надежды, неверна. Рассмотрев все предположения относительно эфира со времен Ньютона и до начала XX в., А. Эйнштейн в труде «Эволюция физики» подвел итоги: «Все наши попытки сделать эфир реальным провалились. Он не обнаружил ни своего механического строения, ни абсолютного движения. От всех свойств эфира не осталось ничего... Все попытки открыть свойства эфира привели к трудностям и противоречиям. После стольких неудач наступает момент, когда следует совершенно забыть об эфире и постараться никогда больше не упоминать о нем»1.

В специальной теории относительности произошел отказ от понятия «эфира».

В общей теории относительности в качестве материальной среды, взаимодействующей с телами, обладающими гравитационными массами, рассматривалось пространство. Сам творец общей теории относительности полагал, что некая вездесущая материальная среда все-таки должна существовать и обладать определенными свойствами. После публикации работ по общей теории относительности Эйнштейн неоднократно возвращался к понятию «эфира» и считал, что «мы не можем в теоретической физике обойтись без эфира, то есть континуума, наделенного физическими свойствами»2.

Однако понятие «эфир» уже принадлежало истории науки, возврата к нему не было, а «континуум, наделенный физическими свойствами» был назван физическим вакуумом.

В современной физике считается, что роль фундаментальной материальной основы мира выполняет физический вакуум, который представляет собой универсальную среду, пронизывающую все пространство. Физический вакуум — это такая непрерывная среда, в которой нет ни частиц вещества, ни поля и вместе с тем он является физическим объектом, а не лишенным всяких свойств «ничто». Непосредственно физический вакуум не наблюдается, в экспериментах наблюдается лишь проявление его свойств.

Принципиальное значение для решения проблем вакуума имеют работы П. Дирака. До их появления считалось, что вакуум есть чистое «ничто», которое каким бы преобразованиям ни подвергать, измениться не способно. Теория Дирака открыла путь к преобразованиям вакуума, в которых прежнее «ничто» обращалось бы во множество пар «частица — античастица».

1 Эйнштейн А. Собр. научных трудов. — Т. IV. — М.: Наука, 1967. — С. 467—468.

2 Там же. Т. II. - М.: Наука, 1966. - С. 160.

123

Вакуум у Дирака представляет собой море электронов с отрицательной энергией как однородный фон, не влияющий на прохождение в нем электромагнитных процессов. Мы не наблюдаем электронов с отрицательной энергией именно потому, что они образуют сплошной невидимый фон, на котором происходят все мировые события. Наблюдаемыми могут быть только изменения состояния вакуума, его «возмущения».

Когда в море электронов попадает богатый энергией световой квант — фотон, то он вызывает возмущение и электрон с отрицательной энергией может перескочить в состояние с положительной энергией, т.е. будет наблюдаться как свободный электрон. Тогда в море отрицательных электронов образуется «дырка» и родится пара: электрон + дырка.

Первоначально предполагалось, что дырками в дираковском вакууме являются протоны, единственные известные в то время элементарные частицы с противоположным электрону зарядом. Однако этой гипотезе не суждено было выжить: в эксперименте

аннигиляцию электрона с протоном никто никогда не

наблюдал.

Вопрос о реальном существовании и физическом смысле дырок был решен в 1932 г. американским физиком К.А. Андерсеном, занимавшимся фотографированием треков приходящих из космоса частиц в магнитном поле. Он обнаружил в космических лучах след неизвестной ранее частицы, по всем параметрам тождественной электрону, но имеющей заряд противоположного знака. Эта частица была названа позитроном. При сближении с электроном позитрон аннигилирует с ним на два фотона высокой энергии (гамма-кванты), необходимость возникновения которых обусловлена законами сохранения энергии и импульса:

Впоследствии оказалось, что почти все элементарные частицы (даже не имеющие электрических зарядов) имеют своих «зеркальных» двойников — античастицы, способные аннигилировать с ними. Исключение составляют лишь немногие истинно нейтральные частицы, например фотоны, которые тождественны своим античастицам.

Огромная заслуга П. Дирака заключалась в том, что он разработал релятивистскую теорию движения электрона, предсказавшую позитрон, аннигиляцию и рождение из вакуума элек-тронно-позитронных пар. Стало ясно, что вакуум обладает слож-

124

ной структурой, из которой могут рождаться пары: частица + античастица. Эксперименты на ускорителях подтвердили это предположение.

Одной из особенностей вакуума является наличие в нем полей с энергией, равной нулю, и без реальных частиц. Возникает вопрос: как может существовать электромагнитное поле без фотонов, электронно-позитронное поле без электронов и позитронов и т.д.

Для объяснения нулевых колебаний полей в вакууме было введено понятие виртуальной (возможной) частицы — частицы с очень малым сроком жизни порядка 10-21 — 10-24 с. Это и объясняет, почему в вакууме постоянно рождаются и исчезают частицы — кванты соответствующих полей. Отдельные виртуальные частицы нельзя обнаружить в принципе, но их суммарное воздействие на обычные микрочастицы обнаруживается экспериментально. Физики считают, что абсолютно все реакции, все взаимодействия между реальными элементарными частицами происходят при непременном участии вакуумного виртуального фона, на который элементарные частицы тоже влияют. Обычные частицы порождают виртуальные частицы. Электроны, например, постоянно испускают и тут же поглощают виртуальные фотоны.

Дальнейшие исследования квантовой физики были посвящены изучению возможности появления из вакуума реальных частиц, теоретическое обоснование которой было дано Э. Шредингером в 1939 г.

В настоящее время концепция физического вакуума, наиболее полно разработанная в трудах академика РАЕН Г.И. Шипова1, является дискуссионной: имеются как сторонники, так и противники его теории.

В 1998 г. Г.И. Шипов разработал новые фундаментальные уравнения, описывающие структуру физического вакуума. Эти уравнения представляют собой систему нелинейных дифференциальных уравнений первого порядка, в которую входят геометризи-рованные уравнения Гейзенберга, геометризированные уравнения Эйнштейна и геометризированные уравнения Янга — Милса. Пространство — время в теории Г.И. Шипова не только искривлено, как в теории Энштейна, но и закручено, как в геометрии Римана — Картана. Французский математик Эли Картон первым высказал мысль о том, что в природе должны существовать поля, порождаю-

Шипов Г.И. Теория физического вакуума. Новая парадигма. — М.: НТ-Центр, 1993.

125

щиеся вращением. Эти поля получили названия полей кручения. Для учета кручения пространства Г.И. Шиповым было введено в геометризированные уравнения множество угловых координат, что позволило использовать в теории физического вакуума угловую метрику, определяющую квадрат бесконечно малого поворота четырехмерной системы отсчета1.

Добавление вращательных координат, при помощи которых описывается поле кручения, привело к распространению принципа относительности на физические поля: все физические поля, входящие в уравнения вакуума, имеют относительный характер.

Уравнения вакуума после соответствующих упрощений приводят к уравнениям и принципам квантовой теории. Полученная таким образом квантовая теория оказывается детерминированной, хотя вероятностная трактовка поведения квантовых объектов остается неизбежной. Частицы представляют собой предельный случай чисто полевого образования при стремлении массы (или заряда) этого образования к постоянной величине. В данном предельном случае происходит возникновение корпуску-лярно-волнового дуализма. Поскольку не учитывается относительный характер физических полей, связанный с вращением, то квантовая теория не является полной и тем самым подтверждаются предположения А. Эйнштейна о том, что «более совершенная квантовая теория может быть найдена на пути расширения принципа относительности»2.

Вакуумные уравнения Шилова описывают искривленное и закрученное пространство — время, истолковываемое как вакуумные возбуждения, находящиеся в виртуальном состоянии.

В основном состоянии абсолютный вакуум имеет нулевые средние значения момента импульса и других физических характеристик и в невозмущенном состоянии наблюдаем. Разные состояния вакуума возникают при его флуктуациях.

Если источником возмущения является заряд q, то его состояние проявляется как электромагнитное поле.

Если источником возмущения является масса т, то состояние вакуума характеризуется как гравитационное поле, что впервые было высказано А.Д. Сахаровым3.

1 Шипов Г.И. Теория физического вакуума. — М.: МНТЦ ВЕНТ, 1992. — С. 6.

2 Там же. С. 9.

Сахаров А.Д. Вакуумные вантовые флуктуации в искривленном пространстве и теория гравитации//Доклады АН СССР. — Т. 177. —1967. — №1. — С. 70—71.

126

Если источником возмущения является спин, то состояние вакуума интерпретируется как спиновое поле, или торсионное поле (поле кручения).

Исходя из того что физический вакуум — это динамическая система, обладающая интенсивными флуктуациями, физики полагают, что вакуум является источником материи и энергии как уже реализованных во Вселенной, так и находящихся в скрытом состоянии. По словам академика Г.И. Наана, «вакуум есть все, и все есть вакуум».

4.3. Мегамир: современные астрофизические и космологические концепции

Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд и звездных систем — галактик.

Все существующие галактики входят в систему самого высокого порядка — Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15—20 млрд световых лет.

Понятия «Вселенная» и «Метагалактика» — очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие «Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» — тот же мир, но с точки зрения его структуры — как упорядоченную систему галактик.

Строение и эволюция Вселенной изучаются космологией. Космология как раздел естествознания находится на своеобразном стыке науки, религии и философии. В основе космологических моделей Вселенной лежат определенные мировоззренческие предпосылки, а сами эти модели имеют большое мировоззренческое значение.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]