Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kursovoy_po_Larkinu_4kurs.doc
Скачиваний:
9
Добавлен:
25.08.2019
Размер:
174.08 Кб
Скачать

II. Основные энергетические характеристики холодильной машины.

  1. Удельная теплопроизводительность конденсатора:

qк = h2 – h4 = 763,06-546,7 = 216,36 кДж/кг.

  1. Удельная холодопроизводительность испарителя:

qо = h7 – h6 = 698,2-539,84=158,36 кДж/кг.

  1. Удельная тепловая мощность РТО:

qРТО = h4 – h5 = h1 – h7 = 705,06-698,2 = 6,86 кДж/кг.

  1. Удельная работа компрессора:

lд = h2 – h1 = 763,06-705,06 = 58 кДж/кг.

5) Массовый расход фреона:

Gx = Qо/ qо = 160/158,36 = 1,01 кг/с.

6) Тепловая мощность конденсатора:

Qк = Gx* qк = 1,01*216,36 = 218,5 кВт.

7) Тепловая мощность РТО:

Qрто = Gx* qрто = 1,03*6,86 = 6,9 кВт.

8) Электрическая мощность привода компрессора:

Nэ = Gx* lд/э = 1,01*58/0,95 = 61,66 кВт,

где э = 0,95 – к.п.д. злектродвигателя компрессора.

9) Холодильный коэффициент цикла:

 = Qо/ Nэ = 160/ 63,25 = 2,529

III. Объёмная подача и выбор компрессора.

1) Фактический объёмный расход хладоагента:

Vx = Gx*v1 = 1,01*0,08414 = 0,0871 м3/с,

где v1 – удельный объём пара фреона на входе в компрессор (точка 1).

2) Индикаторный коэффициент подачи компрессора:

i = = 0,7568

где Ро и Рк давления в испарителе и конденсаторе, соответственно;

Р = 0,1 бар – сопротивления клапанов компрессора.

3) Коэффициент невидимых потерь:

w = To/Tк = 257/311= 0,826

4) Коэффициент подачи компрессора:

 = w* i = 0,625

5) Теоретическая подача компрессора:

Vт = Vx /  = 0,0871/0,625 = 0,1393 м3/с.

  1. Компрессор выбираем по его теоретической подаче и мощности привода:

По таблице 5.5 (см. литературу [2]) выбираем восьми цилиндровый поршневой компрессор ПБ-220 с теоретической подачей 0,167 м3/с и установленной мощностью двигателя 83 кВт. Диаметр цилиндров – 115 мм; ход поршня – 82 мм; число оборотов вала – 24 с-1.

IV. Тепловой расчёт конденсатора.

1) Средний температурный напор в конденсаторе:

tб = 38-28 = 10 оС; tм = 38-32 = 6 оС

2) Ориентировочный коэффициент теплопередачи в водоохлаждаемых кожухотрубных конденсаторах типа КТР с наружным накатанным оребрением, отнесённый к оребрённой поверхности ( [2], стр. 111, 114):

K2 ≈ 700 Вт/(м2*оС)

3) Ориентировочная поверхность теплообмена конденсатора:

F = Qк /( K2*∆tср) = 218,5*103/(700*8) = 39 м2.

Выбираем для установки горизонтальный кожухотрубный конденсатор типа КТР-35 с наружным накатанным оребрением на медных трубах диаметром  20 х 3 мм ([2], стр. 110; [3], стр. 109-110):

  • поверхность теплообмена (наружная) Fн = 40 м2;

  • число и длина труб n = 135; l = 2 м;

  • число ходов z = 4;

  • коэффициент оребрения Кор = 2,4;

  • высота и толщина ребер h = 2 мм; р = 2 мм;

  • приведенное число рядов по высоте m = 5;

  • проходное сечение для воды f1 = n**d12/(4*z) = 0.00678 м2;

  • внутренний диаметр обечайки корпуса D1 = 404 мм.

4) Объёмный расход хладоагента на входе конденсатора:

Vп = v2*Gx = 0,01976*1,01 = 0,01995 м3

  1. Площадь проходного сечения по пару:

f2 = n1*l*(S1 – d2) = 10*2*(0,03 – 0,02) = 0,2 м2

  1. Скорость пара в узком сечении пучка:

w1 = Vп/ f2 = 0,099 м/с

В связи с малой величиной скорости пара, расчет теплоотдачи проводим для конденсации неподвижного пара на пучке.

  1. Теплоотдача на одиночной трубе:

N = 0,728*B /(t*d2)0.25

где В = 1468,6 ([3], стр. 48, табл. 2.9) – определяется по температуре насыщения; d2 = 0,02 м; t = tн – tс = 38 – 34 = 4 оС; где tс = (tвср + tн)/2 = 34 оС – температура стенки трубы.

N = 0,728*1468,6 /(4*0,02)0.25 = 2009,6 Вт/(м2*К).

  1. Учёт оребрения.

При высоте и толщине ребер h = 2 мм; р = 2 мм,

модуль ребра:

= = 71,78

Коэффициент эффективности ребра ([3], стр. 74):

Еро = = 0,99.

Можно считать, что на всей оребренной поверхности коэффициент теплоотдачи один и тот же - N = 2009,6 Вт/(м2*К).

  1. Средняя теплоотдача при конденсации на пучке ([3], стр. 49):

2 = N/m0.167 = 1545,8 Вт/(м2*К).

11) Теплоотдача при течении воды внутри труб.

Массовый расход воды:

Gв = Qк/(ср*tв) = 218,5/(4,2*4) = 13 кг/с,

где tв = tв2 – tв1 = 32-28 = 4 оС.

Скорость воды в трубах:

W1 = Gв /(в* f1) = 13/(1000*0,00519) = 2,5 м/с.

Число Рейнольдса в трубах:

Re1 = W1*d1/1 = 2,5*0,0132/(0,805*10-6) = 40993 >104

Теплофизические свойства воды при средней температуре tв = 30 оС:

Prж = 5,45; Prс = 5,01; 1 = 0,805*10-6 м2/с; 1 = 0,612 Вт/(м*К) – число Прандтля (при температуре жидкости и стенки, соответственно), кинематическая вязкость и теплопроводность [10].

Коэффициент теплоотдачи при турбулентном течении внутри труб может быть рассчитан по формуле ([8] стр. 186):

Nu1 = 0,021* Re10,8* Prж 0.43*( Prж / Prс)0,25

Nu1 = 0,021* 409930,8* 5,45.43*( 5,45/ 5,01)0,25 = 217,5

1 = Nu1*1/d1 = 10084 Вт/(м2*К).

12) Коэффициент теплопередачи, отнесенный к оребрённой поверхности:

К2 = = 1130 Вт/(м2*К).

13) Уточняем температуру стенки трубы.

tс = tвср + К2*(tн - tвср)/ 1 = 30+1130*(38-30)/1545,8 = 35,8 оС

14) Далее повторяем расчёт начиная с пункта 8:

t = tн – tс = 38 – 35,8 = 2,2 оС;

N = 0,758*1468,6 /(2,2*0,02)0.25 = 2430,5 Вт/(м2*К).

Средняя теплоотдача при конденсации на пучке:

2 = 2430,5/50.167 = 1628,3 Вт/(м2*К).

Теплоотдача при течении воды внутри труб не изменится:

1 = 217,5*0,612/0,0132 = 10084 Вт/(м2*К).

Коэффициент теплопередачи, отнесенный к оребрённой поверхности:

К2 =  = 1173,5 Вт/(м2*К).

15) Расчётная поверхность теплообмена конденсатора:

Fр = Qк /( K2*∆tср) = 218*103/(1173*8) = 23,33 м2.

С учётом коэффициента запаса 1,25 поверхность трубного пучка в конденсаторе должна быть не менее:

F = 1.25*Fр = 29,16 м2.

Следовательно, можно выбрать для установки конденсатор КТР-25, у которого поверхность теплообмена F = 30 м2 и длина труб в пучке 1,5 м, а все остальные геометрические характеристики те же самые. Коэффициент теплопередачи останется неизменным и, следовательно, расчётная поверхность тоже.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]