Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
реф. аналоговая и цифровая звукозапись.docx
Скачиваний:
7
Добавлен:
24.08.2019
Размер:
41.49 Кб
Скачать

Цифровая звукозапись

Принцип цифрового представления колебаний звукозаписи достаточно прост:

- вначале нужно преобразовать аналоговый сигнал в цифровой, это осуществляет устройство — аналого-цифровой преобразователь (АЦП)

- произвести сохранение полученных цифровых данных на носитель: магнитную ленту (DAT), жёсткий диск, оптический диск или флеш-память

- для того чтобы прослушать сделанную запись, необходимо воспроизведение сделанной записи с носителя и обратное преобразование из цифрового сигнала в аналоговый, с помощью цифро-аналогового преобразователя (ЦАП).

Принцип действия АЦП — тоже достаточно прост: аналоговый сигнал, полученный от микрофонов, электро-музыкальных инструментов, акустических инструментов, духовых, ударных и проч., преобразовывается в цифровой. Это преобразование включает в себя следующие операции:

1. Ограничение полосы частот производится при помощи фильтра нижних частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации.

2. Дискретизацию во времени, то есть замену непрерывного аналогового сигнала последовательностью его значений в дискретные моменты времени — отсчетов. Эта задача решается путём использования специальной схемы на входе АЦП — устройства выборки-хранения.

3. Квантование по уровню представляет собой замену величины отсчета сигнала ближайшим значением из набора фиксированных величин — уровней квантования.

4. Кодирование или оцифровку, в результате которого значение каждого квантованного отсчета представляется в виде числа, соответствующего порядковому номеру уровня квантования.

Делается это следующим образом: непрерывный аналоговый сигнал «режется» на участки, с частотой дискретизации, получается цифровой дискретный сигнал, который проходит процесс квантования с определенной разрядностью, а затем кодируется, то есть заменяется последовательностью кодовых символов. Для записи звука в полосе частот 20-20 000 Гц, требуется частота дискретизации от 44,1 и выше (в настоящее время появились АЦП и ЦАП c частотой дискретизации 192 и даже 384 кГц). Для получение качественной записи достаточно разрядности 16 бит, однако для расширения динамического диапазона и повышения качества звукозаписи используется разрядность 24 (реже 32) бита.

Принцип действия ЦАП

Цифровой сигнал, полученный с декодера, преобразовывается в аналоговый. Это преобразование происходит следующим образом:

  1. Декодер ЦАП преобразует последовательность чисел в дискретный квантованный сигнал

  2. Путем сглаживания во временной области из дискретных отсчетов вырабатывается непрерывный во времени сигнал

  3. Окончательное восстановление сигнала производится путем подавления побочных спектров в аналоговом фильтре нижних частот. [4]

Первые попытки цифровой записи были сделаны все на той же магнитной пленке. Заметим, что до этого эксперимента на пленку пытались нанести и механическую запись. Полученное устройство назвали тогда шоринофоном (по фамилии создателя — Шорина). Суть же цифровой записи сводилась к следующему: носитель оставался прежним, но кардинально менялось то, что на него писалось.

Последующий рывок в этой области был сделан японцами, которые в 1953 году сообщили, что научились записывать звук при помощи импульсно-кодовой модуляции. Но наглядно эти заявления они подтвердили лишь в 1967 году, когда фирма NHK продемонстрировала самый настоящий цифровой магнитофон. В этом приборе оцифрованный звук записывался двумя вращающимися головками на дюймовую ленту, и уже в первых записях сигнал не шипел, не дрожал и не плавал, как звук аналоговых магнитофонов.

О поточном производстве цифровых проигрывателей речь тогда, конечно, не шла: слишком дороги и велики были микросхемы запоминающих устройств. И все же покупатели нашлись и на эти первые образцы. Ими стали студии звукозаписи, которые в погоне за качеством не жалели денег и могли позволить себе не обращать внимания на габариты. Основу тех первых аппаратов составлял магнитофон с лентой шириной 19 мм.

В 1972 году был создан 200-килограммовый цифровой гигант на базе профессионального видеомагнитофона: запись производилась на двухдюймовую ленту четырьмя вращающимися головками. Его особенностью было то, что звук писался именно в телевизионный кадр, то есть в его 576 строк. Частотный диапазон записываемого звука составлял от 20 до 20 000 Гц. Таким образом, уже тогда этот, казалось бы, доисторический аппарат 70-х годов дошел до пределов возможностей человеческого слуха. Этот магнитофон, как и его предшественник, стал активно применяться в студиях, на нем записывались мастер-ленты для грампластинок высшей категории качества.

Примерно в это же время производители занялись разработками цифровых магнитофонов с неподвижными головками. В них скорость движения ленты относительно головки была низкой, что могло сделать аппараты более надежными. Один такой магнитофон создали в 1979 году фирмы MITSUBISHI и MATSUSHITA. В том же году между двумя японскими городами открылась первая в мире линия цифрового вещания, и в это же время симфонический оркестр Берлинской филармонии приехал с гастролями в Токио. Все эти три события оказались связаны между собой: концерты оркестра с 16 по 26 октября записывались на магнитофон, а в конце года через новую ветку вещания их услышала почти вся Япония.

Еще в октябре 1977 года фирма SONY попыталась приобщить к цифровому звуку массового слушателя, создав занятную цифровую приставку к обычному видеомагнитофону. Это устройство преобразовывало аналоговый сигнал в цифровой, а затем в «псевдотелевизионный». Таким образом, видеомагнитофон помимо его исходного назначения стали использовать для записи звука очень хорошего качества. В следующем году эта фирма выпустила приставку-адаптер классом выше, для профессионалов. 1979 год стал годом унификации цифровой записи. Специалисты собрались и договорились о единых стандартах в этой области, подарив тем самым цифровым технологиям путевку в долгую жизнь. К этому времени цифровая приставка весила всего 4 кг и значительно подешевела (до 1 000$). Однако помимо профессионалов новинку оценили только те, кто был очень увлечен подобной техникой. Обычные же люди привыкли смотреть VHS-кассеты, а не слушать их, как бы хорошо они при этом ни звучали. И, как водится, обычные покупатели продолжали искать что-то более дешевое и простое, а не загадочную цифровую приставку не совсем понятного назначения.

В 1983 году представители 81 фирмы (в основном японские) собрались на конференции, чтобы обсудить будущее цифровых технологий. Конференция оказалась очень продуктивной и в буквальном смысле определила будущее этого рынка. Участники мероприятия сформировали две рабочие группы, каждая из которых должна была трудиться либо над магнитофонами системы S-DAT, либо — R-DAT, отпочковавшимися от системы DAT (DIGITAL AUDIO TAPE — цифровой аудиомагнитофон). Первая — система с неподвижной многополюсной головкой (Stationary), вторая — с несколькими вращающимися (Rotary). Довольно скоро выяснилось, что магнитофоны R-DAT более жизнеспособны по всем параметрам: и проще, и меньше, и дешевле. В начале 1987 года магнитофоны RDAT появились на прилавках. Кассеты к ним и сегодня являются самыми маленькими из звуковых кассет (75x54x10,5 мм), при этом они обеспечивают до двух часов звука отменного качества. Именно на RDAT сегодня делаются мастер-записи для CD. [6]