Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-5История развития экологии.doc
Скачиваний:
21
Добавлен:
19.08.2019
Размер:
180.22 Кб
Скачать

1История развития экологии. Термин "экология" происходит от греческого слова "ойкос", что значит "дом". Буквально, экология — это изучение "жилищ" или более широко — "окружения". "Логос" — наука. Таким образом, экология — это наука об окружающем нас мире.

В экологии главное — не изучение существ, а изучение состояния среды обитания и процессов взаимодействия существ со средой обитания. Объектами экологии являются биосфера, экосистемы, сообщества (биоценоз), популяции организмов, биотон.

В XIX в. экологи изучали в основном закономерности биологического взаимодействия в биосфере, причем роль человека в этих процессах считалась второстепенной. В XX столетии ситуация изменилась, экологов все больше стала беспокоить роль человека в изменении окружающего нас мира.

Разрушающее влияние деятельности человека на природу еще никогда не принимало столь острого, драматического характера, как в настоящее время. Загрязнение воздуха, воды, акватории Мирового океана (сброс отработанных радиоактивных веществ, нефтепродуктов, отходов сельского хозяйства, затопление вредных отходов производства, ядов и т. д.), эрозия почв, увеличение посевных площадей, вырубка лесов, чрезмерная урбанизация — все это повлияло на изменение климата, вызвало появление парникового эффекта, озоновых дыр. Таков далеко не полный перечень негативных последствий во взаимоотношениях природы и общества.

Дальнейшее нарастание негативных противоречий между человеком и природой может привести к непоправимой катастрофе, полному уничтожению всей нашей цивилизации.

В истории развития экологии можно выделить три основных этапа.

На 1-м этапе развития экологии главным было изучение и описание природы. В 1870—1879 гг. французский исследователь Жан Анри Фабер написал труд "Энтомологические воспоминания", в котором рассказал о жизни насекомых; описал среду их обитания, их отношения, симбиоз, конкуренцию с другими видами.

Исследования ученых середины 20-х гг. приводят к изучению сообществ. Ученые стремились открыть законы динамики популяции как переплетение взаимоотношений живых существ друг с другом и с условиями неживой природы.

На 2-м этапе экология изучает экосистему. Впервые этот термин употребил Артур Джордж Тенсли в 1935 г., а несколько позже, в 1942 г., Раймонд Линдерман разработал принципы изучения экосистемы, через которую протекает энергия и цикл питания по всем ее живым и неживым компонентам.

По определению Ф. Кастри (1981 г.), экосистема понимается "как система, четко обозначенная в пространстве и во времени, в которую включены не только организмы, обитающие в ней, но и физические условия климата, почвы, равно как и взаимодействия между разными организмами и между последними и физическими условиями".

Так было положено начало определению экосистемы, как основной единицы измерения экологии.

На втором этапе развития экология все более сосредотачивается на измерении экосистемы как функционального сообщества, состоящего из взаимодействующих организмов и всех аспектов окружающей среды в любой специфической области. Это позволяет определить экосистему как живое сообщество вместе с окружающей ее мертвой физической средой, которые обладают равновесием, взаимозависимостью, а также обусловлены изменениями энергии и материи.

Для того чтобы отношения между разными формами жизни и жизненной средой были стабильны, должна существовать цепь питания, обеспечивающая энергию, необходимую для существования живых организмов. Цепь питания начинается с низших и ведет к высшим видам, а число особей уменьшается от основания к верху.

Таким образом, в экосистему, кроме живых организмов и физических условий (климат и почва), включены все взаимодействия между различными организмами, физическими условиями и между теми и другими.

На 3-м этапе развития экологии главное внимание уделяется изучению взаимовлияний экосистем. Следует указать, что трудно провести границу между отдельными экосистемами (лес, поля, луга, реки, озера и т. д.), так как они взаимосвязаны. Экосистемы обладают естественной потребностью к саморегуляции, т. е. могут устранять нарушение равновесия, вызванное различными внешними и внутренними воздействиями.

4-й этап в развитии экологии — это изучение биосферы — среды обитания всех живых существ, в том числе и человека. Биосфера представляет собой единство всех экосистем на Земле, где все они взаимосвязаны. В биосфере происходит круговорот материи через цепи питания, можно сказать, что в биосфере каждый есть и каждый бывает съеден.

На 5-м этапе экология сделала акцент на изучении положения человека в биосфере. Специфический характер этого воздействия человека проявляется подлинным видом борьбы с природой, гигантской по своему воздействию, лежащей в основе его коллективной жизни. У природы отвоевываются леса, водоемы, земельные площади под строительство. Недра разрабатываются, причем отношение человека к среде обитания значительно отличается от отношения других живых существ к жизненной среде.

Человек своим трудом меняет природу, влияя на жизненные сообщества, членом которых он является. Поэтому все, что человек производит (и чего в природе нет), может быть вредным для других существ (например, добыча нефти, газа и их потери).

Это особенно становится ясным, если исходить из таких понятий, как "среда" и "пространство". Эти термины определяют основные категории экологии.

В экологическом смысле "пространство" понимается как среда обитания, в которую включается и среда, окружающая человека.

Среда может быть естественной и искусственной. По определению А. Гликсона, естественная среда составляет совокупность природных факторов: воды, солнца, воздуха, ветра, почвы, растительного и животного мира. При этом Земля является центром обитания животных и растений, где в симбиозе живет великое разнообразие микрофлоры и микрофауны.

Искусственная среда — это среда, которую создал человек. В ней присутствуют природные факторы, они имеют влияние, но не являются доминантами. Между природой и искусственной средой нет абсолютных границ. Между ними существует взаимосвязь, которую человек должен учитывать при формировании искусственной среды. Взаимосвязь естественной и искусственной среды выражает понятие "экологическая среда".

Ее основоположники – Чарлз Дарвин, Э.Геккель и профессор МГУ К. Рулье. В начале XX века появились первые экологи, которые трудились в заповедниках и занимались наблюдениями за животными и растениями, а также анализом изменения их численности (популяции). Их именовали «естественниками».

Позднее в биоэкологию входят другие науки: о климате (Ю. Ганн, А. Воейков), о почвах и покровах земли (А. Гумбольт, В. Докучаев), ландшафтах (Л. Берг) и другие.

Особое внимание следует обратить на труды В. Вернадского (1863 – 1945), который первым применил количественный анализ в экологии, раскрыл понятие о биосфере Земли в комплексе (термин «биосфера» - это название монографии В. Вернадского, вышедшей в1926 г.)

 №2

Экология - наука о взаимоотношениях организмов между собой и с окружающей их неорганической средой; о связях в надорганизменных системах, о структуре и функционировании этих систем..

Среда обитания. Часть природы (совокупность конкретных абиотических и биотических условий), непосредственно окружающая живые организмы и оказывающая прямое или косвенное влияние на их состояние, рост, развитие, размножение, выживаемость и т. п., — это и есть среда обитания. На нашей планете организмы освоили четыре основные среды обитания: водную, наземную (воздушную), почвенную и тело другого организма, используемое паразитами и полу паразитами.

ЭТАПЫ РАЗВИТИЯ ЭКОЛОГИИ:

1. Термин "экология" был предложен немецким биологом Эрнстом Геккелем в 1869 г. и к началу века стал обозначать изучение какого-то конкретного вида и его связей с окружающей средой, то что мы сейчас определяем термином аутэкология. 2. К середине 20-х годов 20-го века его начали применять и к исследованию видовых сообществ. Были выработаны такие понятия как трофическая (пищевая) сеть, пирамида чисел. Сформулированы законы, регулирующие численность популяции - то что мы сейчас понимаем под синэкологией. 3. В 1935 году английский геоботаник Э.Тэнсли ввел в экологию термин экосистема. К 1950 г. было разработано понятие экосистемы как основной единицы исследования, в которое входят все взаимоотношения и взаимодействия между физической средой и обитающими в ней видами. Начаты исследования потоков энергии через экосистему и трофических циклов, законы и факторы, определяющие стабильность экосистемы, вмешательство в них человека. 4. В середине 70-х - начато изучение зон на стыке экосистем. Принято положение о том, что совокупность экосистем составляет биосферу. 5. Признание человека как геологообразующей силы. Изучение человека со стороны - как элемента биосферы.

Содержание, предмет и задачи экологии. Основным содержанием современной экологии является исследование взаимоотношений организмов друг с другом и со средой на популяционно-биоценотическом уровне и изучение жизни биологических макросистем более высокого ранга: биогеоценозов (экосистем), биосферы, их продуктивности и энергетики. Предметом исследования экологии являются биологические макросистемы (популяция, биоценозы) и их динамика во времени и в пространстве.

Основные задачи экологии могут быть сведены к изучению динамики популяций, к учению о биоценозах и экосистемах. Структура биоценозов, на уровне формирования которых происходит освоение среды, способствует наиболее экономичному и полному использованию жизненных ресурсов. С этой точки зрения главная теоретическая и практическая задача экологии заключается в том, чтобы вскрыть законы этих процессов и научиться управлять ими в условиях неизбежной индустриализации и урбанизации нашей планеты.

Структура общей экологии.

В «Общей экологии» обычно выделяют несколько взаимосвя­занных разделов, которые иногда рассматривают как отдель­ные дисциплины (табл). Это: учение о факторах среды и за­кономерностях их действия на организмы (факториальная эко­логия); экология на уровне взаимоотношения отдельных орга­низмов и среды (экология организмов, или аутэкология); эколо­гия взаимосвязанных и относительно обособленных групп орга­низмов одних и тех же видов (популяционная, или демографи­ческая, экология), экология взаимосвязанных популяций различ­ных видов между собой (учение о биоценозах). Если биоценозы рассматриваются во взаимосвязи со средой обитания (как еди­ная система), то этот раздел выделяется в учение об экосисте­мах или биогеоценозах. Основополагающим и высшим рангом экологии является учение о биосфере как наиболее крупной (гло­бальной) экосистеме.

№3 Биосфера. Структура и границы биосферы

Биосфера (от греч. bbs - «жизнь», spbaira - «шар») - одна из оболочек (сфер) Земли, состав и энергетика которой в существенных своих чертах определены работой живого вещества. Термин введен Э. Зюссом в 1875 г., в результате работ В. И. Вернадского этот термин стал обозначать всю ту наружную область планеты Земля, в которой не только существует жизнь, но которая в той или иной степени видоизменена или сформирована жизнью.

Биосфера включает в себя тропосферу, гидросферу, литосферу.

Область современного обитания живых организмов охватывает в среднем 1217 км - несколько меньше на суше, больше в океане. Сфера случайного попадания организмов и биогенных элементов колеблется до 4050 км. Считается, что нижняя граница биосферы в среднем лежит на глубине 3 км от поверхности суши и на 0,5 км ниже дна океана, хотя в буровых скважинах живые микроорганизмы обнаружены на глубине 4 км, а микробиологические остатки - до 7 км. В «черных курильщиках» - выходах термальных вод на дне океана на глубинах в 3 км при давлении около 300 атм (34 107 Па) обнаружены живые организмы при температуре 250 С (с повышением давления при t > 100 С вода не кипит). Растения поднимаются в горы до высоты около 5 км. Дальше царствует вечный холод, но жизнь здесь теплится - обитают некоторые паукообразные и микроорганизмы. Верхняя граница биосферы находится на высоте 2025 км на уровне озонового слоя, защищающего все живое от жесткого ультрафиолетового излучения. Выше случайно залетают только споры бактерий и грибов.

Биосфера не только сфера жизни. Это видно из состава вещества биосферы, состоящего из глубоко разнородных геологически не случайных частей:

1) вещества, образуемые процессами, в которых живое вещество не участвует, - косное вещество, твердое, жидкое и газообразное;

2) биокосное вещество, которое создается одновременно живыми организмами и косными процессами, представляя динамические равновесные системы тех и других. Организмы в их образовании играют ведущую роль;

3) вещество, находящееся в радиоактивном распаде. Это вещество в такой форме является одной из самых мощных сил, меняющей всю энергию биосферы;

4) вещество космического происхождения, атомы.

Факторы устойчивости биосферы

1. Устойчивость биосферы в целом, ее способность эволюционировать определяется тем, что она представляет собой систему относительно независимых биоценозов. Взаимосвязь между ними ограничивается связями посредством неживых компонентов биосферы: газов, атмосферы, минеральных солей, воды и т.д.

2. Биосфера представляет собой иерархически построенное единство, включающее следующие уровни жизни: особь, популяция, биоценоз, биогеоценоз. Каждый из этих уровней обладает относительной независимостью, и только это обеспечивает возможность эволюции всей большой макросистемы.

3. Многообразие форм жизни, относительная устойчивость биосферы как среды обитания и жизни отдельных видов создают предпосылки для морфологического процесса, важным элементом которого является совершенствование реакций поведения, связанных с прогрессивным развитием нервной системы. Сохранились лишь те виды организмов, которые в ходе борьбы за существование стали оставлять потомство, несмотря на внутренние перестройки биосферы и изменчивость космических и геологических факторов.

Разнородные природные части биосферы.

Структура биосферы. Биосфера имеет иерархическую структуру. Традиционно в структуре биосферы выделяют атмосферу, гидросферу и литосферу. Атмосфера делится на слои в зависимости от температуры воздуха: ниже 0°С -альтобиосфера, выше 0 "С - тропобиосфера. Гидросфера включает в себя океанобиосферу и аквабиосферу, т.е. солено- и пресноводную среду, и также делится на слои в зависимости от освещенности: фото-, дисфото- и афотосферы. Гео(био)сфера состоит из террабиосферы (твердо-водной среды) и литобиосферы (твердо-воздушной среды). Выделенные подсферы включают экосистемы различного иерархического уровня.

Состав биосферы включает 7 глубоко разнородных частей:

-живое вещество;

-биогенное вещество:

-косное вещество:

-биокосное вещество;

-вещество в радиоактивном распаде:

-вещество рассеянных атомов, не связанных химическими реакциями;

-вещество космического происхождения.

Живое вещество совокупность организмов на планете (растительный и животный мир, микроорганизмы).

Биогенное вещество - совокупность веществ, возникших в результате жизнедеятельности организмов (торф, нефть, мел, природный газ и др.).

Косное вещество - совокупность веществ, в образовании которых живые организмы не участвуют, т.е. горные породы магматического, неорганического происхождения, вода,

Биокосное вещество - продукты распада и переработки горных и осадочных пород живыми организмами (почва, природные воды).

живое вещество биосферы.

Под живым веществом Вернадский понимал совокупность всех живых организмов, выраженную через массу, энергию или химический состав. Живое вещество составляет порядка 0.01 - 0.02 % от массы всей биосферы. Общий вес живого вещества порядка (2.4 - 3.6).1012т (в сухом весе). Вещества, образуемые без участия живых организмов и не вовлеченные в круговорот жизни, Вернадский назвал костными веществами. Вернадский выделял в особую группу биокостное вещество, которое в отличие от костного так или иначе обусловлено воздействием жизни и вовлечено в ее круговорот. Можно также выделить группу биогенных веществ, образующихся в результате жизнедеятельности живых организмов. Это многие полезные ископаемые в первую очередь каменный уголь, нефть, торф, а также известняки, руды металлов и т.п. По сути дела, весь слой осадочных пород можно отнести к биогенным веществам.

Наибольшую роль на планете играет именно живое вещество. Рассмотрим его основные свойства. 1. Высокая химическая активность благодаря биологическим катализаторам (ферментам). В живых организмах при ничтожных температурах протекают реакции между веществами, которые в воздухе не соединяются, даже в лабораторных печах при 1000-градусной жаре.

2. Высокая скорость протекания реакций.

Она на несколько порядков выше, чем в неживом веществе; например, некоторые гусеницы потребляют за день количество пищи, которое в 100-200 раз больше веса их тела; дождевые черви, совокупная масса которых в 10 раз больше биомассы всего человечества, за 150-200 лет пропускают через свои организмы весь однометровый слой почвы

3. Высокая скорость обновления живого вещества. В среднем для биосферы она составляет 8 лет, для суши - 14 лет, а для океана - 33 дня (здесь преобладают организмы с коротким периодом жизни). За всю историю существования жизни общая масса живого вещества, прошедшего через биосферу, примерно в 12 раз превышает массу Земли. 4. Способность быстро занимать все свободное пространство.

Это движение достигается путем размножения организмов”. Именно это свойство позволило сделать вывод о постоянстве количества живого вещества во все эпохи. Некоторые микроорганизмы могли бы освоить весь земной шар за несколько часов или дней, если бы не было факторов, сдерживающих их потенциальные возможности.

5. Активность движения вопреки принципу роста энтропии. Вся история жизни есть свидетельство борьбы с энтропией, то есть с силами разрушения. Жизнь сопротивляется естественному ходу событий, направленному на установление равновесия в природе. Наиболее показательными в этом плане являются такие примеры, как движение рыб против течения реки, движение птиц против силы тяжести и воздушных потоков и т.п.

6. Устойчивость при жизни и быстрое разложение после смерти. В любом живом организме, в том числе и в организме биосферы, жизнь и смерть не могут обходиться друг без друга. Мы живем потому, что в нас беспрерывно что-то умирает и заменяется новым, а нарождающееся через развитие приходит к своей гибели. Любая подсистема организма после смерти должна вернуть вещество в круговорот жизни. Это обеспечивает бесконечность жизненного процесса.

7. Высокая приспособительная способность (адаптация). Например, некоторые организмы выносят температуры, близкие к абсолютному нулю, другие встречаются в термальных источниках с температурой до 140 град., в жерлах вулканов, в сверхглубоких впадинах океана, в водах атомных реакторов, бескислородной среде и т.п.

Функции живого вещества в биосфере.

1.Энергетическая – аккумулирование энергии и ее перераспределение по пищевым цепям.

Поэтому концентрация энергии - это наиболее естественная функция жизни. Наличие живой оболочки планеты препятствует остыванию ее поверхности, аккумулируя в себе энергию, излучаемую в космос.

2.Окислительно-восстановительная – окисление вещества в процессе жизнедеятельности и восстановление в процессе разложения при дефиците кислорода.

Наряду с фотосинтезом в зеленых растениях на Земле происходит почти равное ему по масштабу окисление органических веществ в процессе дыхания, брожения, гниения с выделением воды, углекислого газа и теплоты, которая после этого излучается в космическое пространство.

3. Газовая – способность изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом. Фотосинтез привел к постепенному уменьшению в атмосфере углекислоты и накоплению кислорода и озона. При этом в развитии биосферы наблюдалось по крайней мере два переломных момента: первая точка Пастера (1.2 млрд лет назад), когда количество кислорода достигло 1 % от современного уровня и появились первые аэробные организмы (живущие только в кислородной среде, в отличие от анаэробных, живущих в бескислородной среде); вторая точка Пастера, когда количество кислорода достигло 10 % от современного уровня , создались условия для синтеза озона и озонового слоя, что защитило организмы от ультрафиолетовых лучей. До этого данную функцию выполняли густые водяные облака.

выделяется несколько газовых функций:

1. Кислородно-диоксидуглеродная – создание основной массы свободного кислорода на планете. Носителем данной функции является каждый зеленый организм. Выделение кислорода идет только при солнечном свете, ночью этот фотохимический процесс сменяется выделением зелеными растениями углекислого газа.

2. Диоксидуглеродная, не зависимая от кислородной – образование биогенной угольной кислоты как следствие дыхания животных, грибов и бактерий. Значение функции возрастает в области подземной тропосферы, не имеющей кислорода.

3. Озонная и пероксидводородная – образование озона (и, возможно, пероксида водорода). Биогенный кислород, переходя в озон, предохраняет жизнь от разрушительного действия радиации Солнца. Выполнение этой функции вызвало образование защитного озонового экрана.

4. Азотная – создание основной массы свободного азота тропосферы за счет выделения его азотовыделяющими бактериями при разложении органического вещества. Реакция происходит в условиях как суши, так и океана.

5. Углеводородная – осуществление превращений многих биогенных газов, роль которых в биосфере огромна. К их числу относятся, например, природный газ, терпены, содержащиеся в эфирных маслах, скипидаре и обусловливающие аромат цветов, запах хвойных.

4. Деструктивная – разрушение погибшей биоорганики и костных веществ. Это один из важнейших элементов круговорота веществ в биосфере, обеспечивающего непрерывность жизни путем превращения сложных органических соединений в минеральные вещества, необходимые для растений, стоящих в самых первых звеньях пищевых цепей. Практически все живые организмы биосферы за исключением растений в той или иной мере являются деструкторами (разрушителями).

5. Рассеивающая – рассеяние живого вещества на больших пространствах.

6. Концентрационная – способность организмов концентрировать в своем теле рассеянные элементы окружающей среды. Любое живое существо в процессе своей жизнедеятельности буквально по молекулам собирает из окружающей среды необходимые для него вещества и консервирует их в своей структуре.

7. Транспортная – перенос и перераспределение вещества и энергии. Это является одним из механизмов рассеивающей функции живого вещества. Часто такой перенос осуществляется на громадные расстояния, например, при миграциях и кочевках животных. Это может также способствовать и концентрации элементов среды, достаточно вспомнить птичьи базары.

8. Средообразующая – преобразование физико-химических параметров окружающей среды. В широком смысле результатом данной функции является вся природная среда. Она создана живыми организмами, они же и поддерживают ее в определенном стабильном состоянии. Так состав атмосферы и гидросферы - это продукт жизнедеятельности в биосфере.

9. Информационная – накопление информации и закрепление ее в наследственных структурах. Эта функция пока еще мало изучена. Но, по всей видимости, ее важность превосходит все остальные функции живого вещества.

№4

Среда обитания. Часть природы (совокупность конкретных абиотических и биотических условий), непосредственно окружающая живые организмы и оказывающая прямое или косвенное влияние на их состояние, рост, развитие, размножение, выживаемость и т. п., — это и есть среда обитания. На нашей планете организмы освоили четыре основные среды обитания: водную, наземную (воздушную), почвенную и тело другого организма, используемое паразитами и полу паразитами.

От понятия «среда обитания» следует отличать понятие «условия существования» — совокупность жизненно необходимых факторов среды, без которых живые организмы не могут существовать (свет, тепло, влага, воздух, почва). В отличие от них другие факторы среды хотя и оказывают существенное влияние на организмы, но не являются для них жизненно необходимыми (например, ветер, естественное и искусственное ионизирующее излучение, атмосферное электричество и др.).

Экологи́ческие фа́кторы — свойства среды обитания, оказывающие какое-либо воздействие на организм. Индифферентные элементы среды, например, инертные газы, экологическими факторами не являются.

Экологические факторы отличаются значительной изменчивостью во времени и пространстве. Например, температура сильно варьирует на поверхности суши, но почти постоянна на дне океана или в глубине пещер.

Один и тот же фактор среды имеет разное значение в жизни совместно обитающих организмов. Например, солевой режим почвы играет первостепенную роль при минеральном питании растений, но безразличен для большинства наземных животных. Интенсивность освещения и спектральный состав света исключительно важны в жизни автотрофных организмов (большинство растений и фотосинтезирующие бактерии), а в жизни гетеротрофных организмов (грибы, животные, значительная часть микроорганизмов) свет не оказывает заметного влияния на жизнедеятельность.

Экологические факторы могут выступать как раздражители, вызывающие приспособительные изменения физиологических функций; как ограничители, обусловливающие невозможность существования тех или иных организмов в данных условиях; как модификаторы, определяющие морфо-анатомические и физиологические изменения организмов.

Организмы испытывают воздействие не статичных неизменных факторов, а их режимов — последовательности изменений за определённое время.

Классификации экологических факторов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]