Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теплоснабжение часть 2.doc
Скачиваний:
16
Добавлен:
18.08.2019
Размер:
2.55 Mб
Скачать

2.11 Расчет и подбор компенсаторов

В тепловых сетях в настоящее время наиболее широко применяются сальниковые, П- образные, а в последнее время и сильфонные (волнистые) компенсаторы. Кроме специальных компенсаторов используют для компенсации и естественные углы поворотов теплотрассы - самокомпенсацию. Компенсаторы должны иметь достаточную компенсирующую способность для восприятия температурного удлинения участка трубопровода между неподвижными опорами, при этом максимальные напряжения в радиальных компенсаторах не должны превышать допускаемых (обычно 110 МПа). Необходимо также определить реакцию компенсатора, используемую при расчетах нагрузок на неподвижные опоры. Тепловое удлинение расчетного участка трубопровода , мм, определяют по формуле

, (2.81)

где - средний коэффициент линейного расширения стали, мм/(м · оС), (для типовых расчетов можно принять =1,2· 10ˉ² мм/(м · оС),

- расчетный перепад температур, определяемый по формуле

, (2.82)

где - расчетная температура теплоносителя, оС;

- расчетная температура наружного воздуха для проектирования отопления, оС;

L - расстояние между неподвижными опорами, м.

Компенсирующую способность сальниковых компенсаторов, приведенную в табл. 4.13 [5], уменьшают на величину запаса - 50 мм.

Реакция сальникового компенсатора - сила трения в сальниковой набивке определяется по формуле

, (2.83)

где - рабочее давление теплоносителя, МПа;

- длина слоя набивки по оси сальникового компенсатора, мм;

- наружный диаметр патрубка сальникового компенсатора, м;

- коэффициент трения набивки о металл, принимается равным 0,15.

При подпоре П-образных компенсаторов, их компенсирующая способность, размеры, а также осевая реакция могут быть определены по табл. 11.3 - 11.7 [5], а также по приложению 14 учебного пособия. Технические характеристики сильфонных компенсаторов приведены в табл. 4.14 - 4.15 [5]. Осевая реакция сильфонных компенсаторов складывается из двух слагаемых

(2.84)

где - осевая реакция, вызываемая деформацией волн, определяемая по формуле

, (2.85)

где l - температурное удлинение участка трубопровода, м;

 - жесткость волны, Н/м, принимаемая по паспорту компенсатора;

n - количество волн (линз).

- осевая реакция от внутреннего давления, определяемая по формуле

, (2.86)

где - коэффициент, зависящий от геометрических размеров и толщины стенки волны, равный в среднем 0.5 - 0.6;

D и d – соответственно наружный и внутренний диаметры волн, м;

- избыточное давление теплоносителя, Па.

При расчете самокомпенсации основной задачей является определение максимального напряжения  у основания короткого плеча угла поворота трассы, которое определяют для углов поворотов 90о по формуле

; (2.87)

для углов более 90о, т.е. 90+, по формуле

(2.88)

где l - удлинение короткого плеча, м;

l - длина короткого плеча, м;

Е - модуль продольной упругости, равный в среднем для стали

2· 105 МПа;

d - наружный диаметр трубы, м;

- отношение длины длинного плеча к длине короткого.

При расчетах углов на самокомпенсацию величина максимального напряжения  не должна превышать [] = 80 МПа.

При расстановке неподвижных опор на углах поворотов, используемых для самокомпенсации, необходимо учитывать, что сумма длин плеч угла между опорами не должна быть более 60% от предельного расстояния для прямолинейных участков. Следует учитывать также, что максимальный угол поворота, используемый для самокомпенсации, не должен превышать 130о.