Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материаловедение.doc
Скачиваний:
27
Добавлен:
13.08.2019
Размер:
16.41 Mб
Скачать

Конспект лекций

«Электротехнические материалы»

Оглавление

Диэлектрики 3

Свойства диэлектриков 3

Поляризация диэлектриков 13

Диэлектрические потери 16

Потери на электропроводность 16

Релаксационные потери 17

Зависимость от частоты 17

Зависимость полярных диэлектриков от температуры 17

Зависимость от напряжения 18

Зависимость от влажности 18

Электропроводимость диэлектриков 19

Электропроводность газов 19

Электропроводность жидкостей 20

Электропроводность твёрдых тел 21

Поверхностная электропроводность 22

Пробой диэлектриков 23

Виды пробоя твердых диэлектриков 24

Нагревостойкость диэлектриков 27

Трансформаторное масло 29

Полиэтилен 33

Поливинилхлорид 35

Политетрафторэтилен 37

Эпоксидная смола 38

Лакоткани 40

Электрокартон 41

Пластические массы 42

Слоистые пластики 45

Стекловолокно 50

Миканиты 53

Фарфор 54

Проводники 56

Свойства проводников 56

Медь 58

Алюминий 62

Сплавы высокого сопротивления 64

Вольфрам 65

Полупроводники 67

Свойства полупроводников 67

Полупроводниковые материалы 69

Основные полупроводниковые материалы 77

Магнитные материалы 79

Свойства магнитных материалов 79

Электротехническая сталь 86

Пермаллой и альсифер 88

Ферриты 89

Список литературы 92

Диэлектрики Свойства диэлектриков

Диэлектриками называют вещества, у которых валентная зона отделена от зоны проводимости широкой зоной запрещенных энергией. Важнейшими твердыми диэлектриками являются керамика, полимеры и стекло. В них преобладает ионный или ковалентный тип связи, нет свободных носителей зарядов. Их удельное электрическое сопротивление равно . Электрические свойства диэлектрика определяют область его применения; при этом принимаются во внимание механические свойства материала, его химическая стойкость и другие параметры. Характерной особенностью диэлектрика является способность поляризоваться в электрическом поле. Сущность поляризации заключается в смещении связанных электрических зарядов под действием поля. Смещенные заряды создают собственное внутреннее электрическое поле, которое направлено противоположно внешнему. Мерой поляризации является диэлектрическая проницаемость . Она оценивается отношением емкостей конденсатора. Емкость определяется, когда между пластинами конденсатора находится диэлектрик, а емкость - когда вместо диэлектрика — вакуум. В твердом диэлектрике одновременно проявляется несколько видов поляризации, которые в сумме определяют величину и ее зависимость от температуры и частоты поля. Конструкционные диэлектрики общего назначения имеют небольшое значение — до . Диэлектрики, которые используются в конденсаторах, должны иметь высокие значения , чтобы увеличить емкость конденсатора. У конденсаторных диэлектриков меняется от до .

Наиболее важными видами поляризации являются электронная, ионная, дипольно - релаксационная и самопроизвольная (спонтанная).

Электронная поляризация вызывается деформацией электронных оболочек атомов. Электроны смещаются почти мгновенно, время установления поляризации ничтожно мало, и поэтому она не зависит от частоты.

Ионная поляризация возникает при упругом смещении ионов на расстояния, не превышающие межионные. Отрицательные ионы смещаются в сторону положительного электрода, а положительные ионы — в сторону отрицательного. Время установления ионной поляризации очень мало ( ), и также не зависит от частоты.

Дипольно-релаксационная поляризация проявляется в полярных диэлектриках. Повороты диполей существенно меняют . У неполярных диэлектриков немного больше , у полярных — в несколько раз больше. Повороты диполей при наложении поля и возвращение диполей к неупорядоченному состоянию после снятия поля требуют преодоления некоторого сопротивления молекулярных сил. Эта поляризация появляется и исчезает значительно медленнее электронной или ионной поляризации.

При нагреве диэлектрическая проницаемость изменяется, температурный коэффициент (ТК ) принимает значения от до .Отрицательный ТК имеют диэлектрики с электронной поляризацией, при нагреве увеличивается их объем и соответственно уменьшается плотность зарядов. Диэлектрики с ионной поляризацией имеют положительный ТК . При нагреве поляризация увеличивается вплоть до верхней границы рабочего интервала температур. Это объясняется ослаблением притяжения между ионами и увеличением их смещения. Особенно сильно повышается поляризация, когда ионы начинают смещаться на расстояния больше межионных. В этом случае поляризация зависит от частоты, устанавливается медленно — за и называется ионно-релаксационной.

Изменения дипольно-релаксационной поляризации при нагреве определяются соотношением межмолекулярного притяжения и теплового движения. Ослабление притяжения облегчает ориентацию диполей, а усиление теплового движения ей мешает. В связи с этим поляризация сначала увеличивается до некоторого максимума, а затем уменьшается.

Самопроизвольная поляризация наблюдается только у одного класса диэлектриков — сегнетоэлектриков. При охлаждении сегнетоэлектрика ниже определенной температуры, которую называют точкой Кюри, самопроизвольно, без внешних воздействий, возникает поляризация. Объем сегнетоэлектрика разбивается на домены, в каждом из которых вещество сильно поляризовано. В отсутствие поля домены расположены беспорядочно, и суммарная поляризация равна нулю. При наложении поля поляризация увеличивается нелинейно благодаря переориентации поляризации доменов. При циклическом изменении поля от до возникает петля гистерезиса (рис. 1).

а)

б)

Рис. 1. Зависимость поляризации (а) и диэлектрической проницаемости (б) сегнетоэлектрика от напряженности поля .

Когда напряженность поля возрастает, поляризация достигает насыщения; при этом увеличивается до максимального значения и вновь уменьшается. По аналогии с ферромагнетиками напряженность поля , при которой меняется направление поляризации, называется коэрцитивной силой. Когда , сегнетоэлектрик является мягким; когда , материал жесткий. Известно около сегнетоэлектриков. Они принадлежат к классу активных диэлектриков, которые используются для генерации и преобразования электрических сигналов. Между электрическими, механическими, тепловыми и другими свойствами сегнетоэлектриков существуют нелинейные зависимости. Значения свойств вблизи точки Кюри имеют максимумы или минимумы. В частности, максимальное значение достигается около точки Кюри.

Электропроводимость твердых диэлектриков связана с появлением в них свободных ионов или электронов. Основное значение имеет ионная проводимость, обусловленная примесями.

Электропроводимость диэлектрика подразделяют на объемную (сквозную) и поверхностную. Каждая из них характеризуется своим удельным электрическим сопротивлением - объемным и по поверхностным .

Диэлектрики имеют высокое удельное объемное электрическое сопротивление . При нагреве оно понижается в результате роста подвижности ионов.

Поверхностное электрическое сопротивление зависит как от состава и структуры диэлектрика, так и состояния его поверхности и влажности среды. Загрязнения и влага на шероховатой или пористой поверхности образуют проводящую пленку, диэлектрик может полностью утратить изоляционные свойства, хотя его объемное электрическое сопротивление при этом останется высоким. Для повышения поверхностного электрического сопротивления поверхность изделий стремятся сохранить чистой и гладкой, используя для этого покрытия - лаки и эмали. Поверхностное электрическое сопротивление зависит как от состава и структуры диэлектрика, так и состояния его поверхности и влажности среды. Загрязнения и влага на шероховатой или пористой поверхности образуют проводящую пленку, диэлектрик может полностью утратить изоляционные свойства, хотя его объемное электрическое сопротивление при этом останется высоким. Для повышения поверхностного электрического сопротивления поверхность изделий стремятся сохранить чистой и гладкой, используя для этого покрытия — лаки и эмали.

Диэлектрические потери представляют собой часть энергии электрического поля, которая превращается в диэлектрике в теплоту и нагревает его. При частотах свыше величина потерь становится одним из самых важных параметров диэлектрика.

Для определения потерь диэлектрик удобно рассматривать как конденсатор в цепи переменного тока (рис. 2).

Рис. 2. Векторные диаграммы идеального (а) и реального (б) диэлектриков.

У идеального конденсатора угол сдвига фаз между током и напряжением равен , поэтому активная мощность равна нулю. Диэлектрик не является идеальным конденсатором, и угол сдвига фаз у него меньше на угол . Этот угол называют углом диэлектрических потерь. Тангенс угла и диэлектрическая постоянная характеризуют удельные потери (на единицу объема диэлектрика), :

,

где k — коэффициент; Е — напряженность электрического поля, В/м; f — час­тота поля, Гц.

Произведение называют коэффициентом диэлектрических потерь. По величине диэлектрики подразделяют на низкочастотные ( ) и высокочастотные ( ). К основным источникам потерь диэлектрика относятся его поляризация и электропроводимость, ионизация газов в имеющихся порах и неоднородность структуры из-за примесей и включений.

Электрическая прочность характеризуется сопротивлением пробою. Пробой — это необратимое разрушение твердого диэлектрика под действием поля и потеря изолирующих свойств. Электрической прочностью или пробивной напряженностью Епр называется отношение пробивного напряжения Unp к толщине диэлектрика в месте пробоя. Различают три вида пробоя: электрический, тепловой и электромеханический.

Электрический пробой возникает вследствие ударной ионизации нарастающей лавиной электронов. Пробой наступает почти мгновенно (за с) под действием поля большой напряженности (свыше 1 000 МВ/м) независимо от нагрева диэлектрика. Обычно диэлектрик пробивается при включении напряжения или при его резком скачке.

Тепловой пробой наступает при комбинированном воздействии поля и нагрева, причем пробивная напряженность Епр из-за повышения температуры диэлектрика снижается. Чем лучше отвод теплоты в окружающую среду, тем ниже температура диэлектрика и выше Епр. Тепловой пробой ускоряется при повышении частоты (так как при этом возрастают потери) и замедлении теплоотвода.

Электрохимический пробой наступает при длительном действии поля, сопровождающемся необратимыми изменениями в структуре диэлектрика и понижением его электрической прочности.

По химическому составу диэлектрики разделяют на органические и неорганические. К органическим относятся полимеры, резина, шелк; к неорганическим — слюда, керамика, стекло, ситаллы.

По электрическим свойствам диэлектрики подразделяют на низкочастотные (электротехнические) и высокочастотные (радиотехнические).

Для электроизоляционных материалов решающее значение имеет их нагревостойкость, т.е. способность без ущерба для свойств выдерживать нагрев в течение длительного времени. По нагревостойкости диэлектрики разделяют на семь классов, обозначенных Y, А, Е, В, F, Н, С. В классе Y объединены наименее стойкие целлюлозные, шелковые и полимерные материалы, для них рабочая температура не превышает 90° С. Самыми нагревостойкими являются материалы класса С — слюда, керамика, стекло, ситаллы, а также полиимиды и фторопласт-4. Они выдерживают длительный нагрев 180° С и выше.

Большое влияние на свойства диэлектриков оказывают гигроскопичность и влагопроницаемость. Образование токопроводящих пленок на поверхности и в толще изделий понижает изолирующую способность и может закончиться пробоем. Наиболее гигроскопичны материалы с порами и капиллярами на поверхности — бумага, обычная пористая керамика, слоистые пластики. Проницаемость для водяных паров исключительно важна для пропиточных, заливочных и других защитных материалов. Диаметр молекулы равен всего , и водяной пар проходит сквозь мельчайшие поры. Плотные, непористые материалы не пропускают водяные пары и негигроскопичны. К ним относятся ситаллы, малощелочное стекло, вакуумно-плотная керамика, эпоксидные пластмассы и неполярные полимеры. Для изделий из гигроскопичных диэлектриков используют пропитку, защищают поверхности лаками, глазурью и т.п.

Прочность диэлектриков и особенности их механических свойств являются дополнительным критерием выбора материалов. Керамика, стекло и ситаллы — наиболее прочные диэлектрики. Характерной особенностью этих материалов является хрупкость; их прочности на изгиб. Предел прочности на изгиб равен 30-300 МПа, увеличиваясь до 500 МПа у ряда ситаллов. Для хрупких диэлектриков исключительно важно учитывать тепловое расширение, особенно когда речь идет о работе в условиях быстрых смен температуры или о соединении диэлектриков с металлами. Температурный коэффициент линейного расширения керамики и тугоплавкого стекла не превышают , у легкоплавких стекол он равен , а у ситаллов в зависимости от химического состава — . Особенно велико тепловое тепловое расширение органических диэлектриков, но в пластмассах с неорганическими наполнителями оно примерно такое же, как у металлических сплавов. Кроме того, органические диэлектрики достаточно пластичны, для них термические напряжения не столь опасны.

Стабильность структуры и свойств диэлектриков определяет сроки их эксплуатации. Наибольшую стабильность имеют керамика и ситаллы, в стеклах под влиянием поля мигрируют ионы щелочных металлов и образуются электропроводящие мостики. Добавки РbО и BaO увеличивают стойкость стекла. Против электрохимического пробоя, связанного с миграцией ионов щелочных металлов. Органические диэлектрики разрушаются при комбинированном действии нагрева, окисления на воздухе и ионизации, поэтому их срок службы меньше, чем у керамики или стекла. Большинство пластмасс под действием разрядов обугливается и теряет изолирующую способность. Этого недостатка лишены полистирол, органическое стекло, фторопласты и кремнийорганические пластики. Среди диэлектриков самыми важными являются керамические материалы и особенно сегнетокерамика. Керамика имеет наиболее разнообразные электрические свойства, почти не подвержена старению и устойчива к нагреву.

Установочная керамика применяется для изготовления изоляторов, колодок, плат, каркасов, катушек и т.п. Она должна иметь низкие потери, хорошие электроизоляционные свойства и прочность.

Для работы при низких частотах используют электрофарфор, который дешев и имеет неплохие электрические свойства. Его недостатки — большие потери, резко возрастающие при нагреве выше 200° С, и низкая механическая прочность. Недостатки электрофарфора объясняются действием стекла, которого в нем содержится довольно много.

Основным материалом, используемым для изготовления деталей, предназначенных для работы при высоких частотах, является стеатит, который получают из талька. Стеатиты не содержат вредных примесей, их свойства стабильны до 100° С. Они легко прессуются, при обжиге дают усадку всего 1-2 % и используются для деталей с плотной и пористой структурой и точными размерами. В отличие от других видов керамики стеатит удовлетворительно режется. Недостатки стеатита — растрескивание при быстрых сменах температуры и трудность обжига.