Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билет № 16.doc
Скачиваний:
4
Добавлен:
08.08.2019
Размер:
259.58 Кб
Скачать

Билет № 16

76. Действительные циклы поршневых ДВС и их характеристические параметры. Газообмен в четырехтактных двигателях. Фазы газораспределения. Наддув двигателей. Параметры, характеризующие процессы газообмена.

Действительные рабочие циклы поршневых ДВС обладают рядом особенностей, которые оказывают существенное влияние на свойства транспортных машин.

В процессе эксплуатации автомобильные двигатели, как правило, работают на переменных режимах. Частота вращения коленчатого вала изменяется в широком диапазоне в зависимости от типа двигателя, а время, приходящееся на один цикл, составляет для четырехтактных двигателей 0,15-0,02 с, а для двухтактных в 2 раза меньше. Для обеспечения высокой эффективности рабочего цикла в этих условиях особое внимание уделяется процессам образования топливовоздушной смеси и ее сгоранию.

.В двигателях с искровым зажиганием образование топливовоздушной смеси начинается в процессе впуска в карбюраторе. При этом качество смеси определяется скоростью движения воздуха через карбюратор. Чем больше скорость воздуха, тем тоньше распыливание топлива, что в свою очередь ускоряет испарение распыленных частиц топлива. Период испарения топлива имеет большую продолжительность в тактах впуска и сжатия и заканчивается к моменту появления электрической искры. Для лучшего испарения впускной трубопровод, как правило, обогревается теплотой отработавших газов или горячей водой, выходящей из двигателя. Качественное протекание процесса сгорания обеспечивается образованием однородной (гомогенной) топливовоздушной смеси по всему объему камеры сгорания.

В дизеле процесс смесеобразования протекает в 20-40 раз быстрее, чем в карбюраторном двигателе. Топливо впрыскивается в камеру сгорания за 20-35° до ВМТ, а общая продолжительность впрыскивания не превышает 20-40° по углу поворота коленчатого вала. Процесс смесеобразования растягивается и продолжается при сгорании топлива.

Для лучшего испарения топлива в камере сгорания, где в конце процесса сжатия температура воздушного заряда достигает 700-800 К, а давление 3-4 МПа -7 МПа у дизелей с наддувом), применяют высокие максимальные давления впрыскивания 0-100 МПа), что способствует формированию топливного факела из большого количества мельчайших капель, интенсивному испарению топлива и распространению факела топлива по всему пространству камеры. При этом однако не обеспечивается равномерное распределение топлива по всему пространству камеры. Следовательно, на всех стадиях процесса смесеобразования в камере сгорания дизеля необходимо «организованное» движение воздушного заряда.

Воспламенение топливовоздушной смеси и развитие процесса сгорания в карбюраторных двигателях и дизелях протекает по-разному.

В камере сгорания карбюраторного двигателя, где топливовоздушная смесь практически гомогенная, смесь воспламеняется электрической искрой. При образовании искры небольшой объем топливовоздушной смеси, находящейся в зоне искрового промежутка, нагревается до температуры 1000 К, что вызывает нагревание ближайших слоев смеси и появление Пламени, распространяющегося от очага воспламенения со скоростью 30-50 м/с по всему пространству камеры. Давление в камере нарастает постепенно, обеспечивая «мягкую» работу двигателя. Для более эффективного использования теплоты, выделяющейся при сгорании, процесс необходимо осуществлять вблизи ВМТ. Так как с момента образования искры до видимого развития процесса сгорания проходит некоторое время, искра образуется за несколько градусов до ВМТ (опережение зажигания).

Под фазами газораспределения понимают моменты начала открытия и конца закрытия клапанов, выраженные в градусах угла поворота коленчатого вала относительно мертвых точек. Фазы подбирают опытным путем при конструировании в зависимости от быстроходности двигателя и конструкции его впускной и выпускной систем. Впускной клапан открывается с опережением в конце такта выпуска, когда поршень не доходит до в. м. т., а закрывается с опозданием в начале такта сжатия, когда поршень отойдет от н. м. т. Раннее открытие и позднее закрытие впускного клапана обеспечивает лучшее наполнение цилиндров за счет инерционного напора горючей смеси во впускном трубопроводе.

Выпускной клапан открывается с опережением в конце такта рабочего хода, когда поршень не доходит до н.м.т., что позволяет отработавшим газам выходить из цилиндра под собственным избыточным давлением. Закрытие выпускного клапана происходит после прохождения поршнем в.м.т. в начале такта впуска, что обеспечивает лучшую очистку цилиндров, так как отработавшие газы в это время еще продолжают выходить из цилиндра по инерции. Угол поворота коленчатого вала, на протяжении которого оба клапана в цилиндре открыты, называется перекрытием клапанов.

Наддув двигателя с помощью турбокомпрессора, для привода которого используется энергия отработавших газов, широко применяется в настоящее время в автомобильных и тракторных дизелях. При газотурбинном наддуве не требуется механический привод к агрегату наддува, что позволяет размещать турбокомпрессор на двигателе в любом удобном месте.

Использование энергии отработавших газов для привода турбокомпрессора улучшает, наряду с мощностными, также и экономические показатели двигателя. Однако приемистость двигателя при газотурбинном наддуве улучшается незначительно, так как вследствие относительно большого момента инерции ротора турбокомпрессора при увеличении частоты вращения уменьшается давление наддува. Последнее обстоятельство не является определяющим для двигателей, установленных на автомобилях, которые работают в условиях междугородных перевозок, где пре­обладают режимы движения с постоянными или медленно изменяющимися скоростями.

Применение газотурбинного наддува в автомобильных двигателях с принудительным зажиганием долгое время сдерживалось из-за отсутствия жаропрочных сплавов, способных длительное время работать при температурах 1000—1200° С. В настоящее время такие сплавы созданы и уже имеется несколько типов легковых и грузовых двигателей с газотурбинным наддувом.

77.Сцепление автомобиля. Требования к сцеплению. Классификация сцеплений. Методика определения конструктивных параметров и размеров сцепления. Динамические нагрузки в трансмиссии, рабочий процесс фрикционного неавтоматического сцепления.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]