Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_cherchenie.doc
Скачиваний:
33
Добавлен:
06.08.2019
Размер:
236.54 Кб
Скачать

2. Ортогональная трехмерная система проекций

В связи с тем, что любые тело или фигура это совокупность точек, верно утверждение, что для определения формы предмета достаточно двух ортогональных проекций (при наличии буквенных обозначений).

Однако, в практике изображения различных инженерных сооружений, машин и строительных конструкций очень часто необходимо построение дополнительных проекций. Главная цель этого — сделать проекционный чертеж легко читаемым и понятным.

На рисунке изображена модель трех плоскостей проекций. Плоскость, перпендикулярная и и , обозначается буквойи называется профильной.

Проекции точек на профильную плоскость также называются профильными и обозначаются заглавными буквами или цифрами с индексом 3 (aз, bз, cз, ... 1з, 2з, 3 ...).

Попарно пересекаясь, плоскости проекций образуют три оси: ОX, ОY и ОZ, которые рассматриваются как система прямоугольных декартовых координат в пространстве с началом координат в точке О.

Показанная на рисунке система знаков определяется “правой системе” координат.

Все пространство делится тремя плоскостями проекций на восемь трехгранных углов — октантов . Нумерация октантов дана на рисунке.

Снова предполагаем, что зритель, рассматривающий предмет, находится в первом октанте.

Чтобы получить эпюр, плоскости и вращают до совмещения их с плоскостью . В результате вращения передняя полуплоскость совмещается с нижней полуплоскостью , а задняя полуплоскость — с верхней полуплоскостью . При повороте на 90° вокруг оси ОZ передняя полуплоскость совмещается с правой полуплоскостью , а задняя полуплоскость — с левой полуплоскостью .

Вид совмещенных плоскостей проекций показан на рисунке. На этом чертеже оси ОX и ОZ, лежащие в не подвижной плоскости , изображены лишь один раз, а ось ОY — дважды. Это можно объяснить так. Ось ОY , вращаясь с плоскостью , на эпюре совмещается с осью ОZ, а вращаясь вместе с плоскостью , совмещается с осью ОX.

При обозначении осей на эпюре отрицательные полуоси (— ОX, — ОY, — ОZ) не указываются.

Здесь должен быть рисунок (плоскостей, эпюров и т.п.)

  1. Геометрические преобразования при центральном и параллельном проецировании.

и

  1. Виды проецирования

Изображения предметов на чертежах получают проецированием.Проецирование - это процесс полу­чения изображения предмета на какой-либо поверх­ности Получившиеся при этом изображение называют проекцией предмета

Слово "проекция" в переводе с латинского означа­ет "бросание вперёд, вдаль". Нечто похожее на проекцию можно наблюдать, если параллельно стене, противопо­ложной окну, расположить ученическую тетрадь. На сте­не образуется тень в виде прямоугольника.

Элементами, с помощью которых осуществляется проецирование, являются (рис. 11): центр проецирова­ния - точка, из которой производится проецирование; объект проецирования - изображаемый предмет; плоскость проекции - плоскость, на которую производится проецирование;проецирующие лучи - воображаемые прямые, с помощью которых производится проецирова­ние, результатом проецирования является изображение, или проекция, объекта.

Различают центральное и параллельное проеци­рование. При центральном проецировании все проеци­рующие лучи исходят из одной точки - центра проеци­рования, находящегося на определённом расстоянии от плоскости проекций. На рис, 11а за центр проециро­вания условно взята электрическая лампочка. Исходящие от неё световые лучи, которые условно приняты за про­ецирующие, образуют на полу тень, аналогичную цен­тральной проекции предмета.

Метод центрального проецирования используется при построении перспективы. Перспектива даёт возмож­ность изображать предметы такими, какими они пред­ставляются нам в природе при рассмотрении их с опре­делённой точки наблюдения.

В машиностроительных чертежах центральные проекции не применяются. Ими пользуются в строитель­ном черчении и в рисовании.

При параллельном проецировании все проеци­рующие лучи параллельны между собой. На рис.11б по­казано, как получается параллельная косоугольная про­екция. Центр проецирования предполагается условно удалённым в бесконечность. Тогда параллельные лучи отбросят на плоскость проекций тень, которую можно принять за параллельную проекцию изображаемого предмета.

В черчении пользуются параллельными проекция­ми. Выполнять их проще, чем центральные.

Если проецирующие лучи составляют с плоскостью проекций примой угол, то такие параллельные проекции называются прямоугольными.

Прямоугольные проекции называют также ортого­нальными. Слово "ортогональный" происходит от гре­ческих слов "orthos" - прямой и "gonia" - угол. Чертежи в системе прямоугольных проекций дают достаточно полные сведения о форме и размерах предмета, так как предмет изображается с нескольких сторон. Поэтому в производственной практике пользуются чертежами, со­держащими одно, два, три или более изображений пред­мета, полученных в результате прямоугольного проеци­рования.

  1. Масштабы

Для изображения на чертежах очень крупных или слишком мелких изделий (самолеты, часы) используют масштабы. Масштаб — это отношение размеров изображения действительным размерам предмета.

Если изображения на чертежах имеют такие же размеры, как и действительные размеры детали, считается, что чертежи выполнены в натуральную величину, или в масштабе 1:1 (один к одному). Если изображения на чертеже имеют размеры больше действительных размеров детали, то для их построения использован масштаб увеличения. Если изображения на чертеже имеют размеры меньше действительных размеров детали, то для их построения использован масштаб уменьшения.

Стандарт (ГОСТ 2.302-68) устанавливает:

—  масштаб натуральной величины — 1:1. —  масштабы уменьшения — 1:2; 1:2,5; 1:4; 1:5; 1:10; 1:15; 1:20; 1:25; 1:40; 1:50; 1:75; 1:100; 1:200; 1:400; 1:500; 1:800; 1:1000. — масштабы увеличения — 2:1; 2,5:1; 4:1; 5:1; 10:1; 20:1; 40:1; 50:1; 100:1.

При любом масштабе на чертеже всегда наносят только действительные размеры. Масштаб записывают в специальной графе основной надписи по типу 1:1; 1:2; 2:1 и т. д. Масштаб может быть проставлен на поле чертежа только для тех изображений, которые выполнены в масштабе, отличном от масштаба, заявленного в основной надписи. В этом случае над изображением делают запись М 1:2; М 2:1 и т. д. Сопоставьте изображения, выполненные в различных масштабах (рис. 56).

 

Чтобы построить чертеж детали в масштабе 2:1, необходимо линейные размеры изображения увеличить в два раза. Если необходимо выполнить изображение в масштабе 1:2, то линейные размеры уменьшаются в два раза. Размеры углов не изменяются при выборе масштаба изображения.

5. Линии чертежа

1. Сплошная толстая основная — применяется для выполнения линий видимого контура, линий контура сечений. Этой линией вы будете обводить внутреннюю рамку чертежа, графы основной надписи. Толщина сплошной основной линии (S) выбирается в пределах от 0,5 до 1,4 мм. 2. Сплошная тонкая линия предназначается для нанесения размерных и выносных линий, нанесения штриховки, проведения полок линий-выносок, для изображения воображаемых линий перехода одной поверхности в другую. Толщина линии выбирается от S/3 до S/2. 3. Сплошная волнистая линия применяется для изображения линии обрыва, разграничения вида и разреза. Толщина линии от S/3 до S/2. Этот тип линии выполняется от руки. 4. Сплошная тонкая с изломом. Этой линией изображают длинные линии обрыва. Толщина линии от S/3 до S/2. 5. Штриховая линия используется для изображения линий невидимого контура, невидимых линий перехода. Длину штриха выбирают от 2 до 8 мм, расстояние между штрихами от 1 до 2 мм. Толщина линии от S/3 до S/2. 6. Разомкнутая линия предназначается для изображения места секущей плоскости при построении сечений и разрезов. Толщина линии от S до 1,5 S. 7. Штрихпунктирная тонкая линия применяется для изображения осевых и центровых линий. Длина штриха выбирается от 5 до 30 мм, расстояние между штрихами от 3 до 5 мм. Штрихи чередуются с точками. Толщина линии от S/3 до S/2. При изображении окружности штрихи штрихпунк-тирной линии должны пересекаться в центре окружности, и поэтому линию называют штрихпунктирная центровая, подчеркивая тем самым ее назначение (рис. 31). Штрихпунктирная (осевая и центровая) линия должна выступать за контуры изображения предметов на 3-5 мм (рис. 31, а). Если необходимо задать центр окружности для отверстия диаметром менее 12 мм, то центровые линии выполняют одним штрихом (рис. 31, б). На рисунке 31 показано нанесение осевых и центровых линий.

 

8.   Штрихпунктирная утолщенная линия применяется для изображения поверхности, подлежащей термообработке или покрытию (в школьном курсе не используется). 9. Штрихпунктирная тонкая линия с двумя точками применяется для изображения линий сгиба на развертках, для изображения частей изделий в крайних или промежуточных положениях. Длина штриха от 5 до 30 мм, расстояние между штрихами от 4 до 6 мм. Толщина линии от S/3 до S/2.

На рис. 32 представлен чертеж изделия, при выполнении которого использованы некоторые типы линий. Рассматривая его, обратите внимание на то, что:

1. Чертеж выполняется различными типами линий. 2. Толщина линий одного и того же типа на чертеже должна быть одинаковой. 3. Наименьшая толщина линий, выполненных в карандаше, должна быть 0,3 мм, а наименьшее расстояние между штрихами линий от 0,8 до 1,0 мм. 4. Штрихи, промежутки между штрихами для одного и того же типа линий должны быть приблизительно одинаковой длины. 5. Штрихпунктирная линия пересекается в центре окружностей штрихами и заканчивается изображением штриха. 6. Вычерчивание изображений предметов начинается с проведения осевых и центровых линий, от которых ведутся все последующие построения.

 

6. Способ замены плоскостей проекций.

Сущность этого способа заключается в том, что заменяют одну из плоскостей на новую плоскость, расположенную под любым углом к ней, но перпендикулярную к незаменяемой плоскости проекции. Новая плоскость должна быть выбрана так, чтобы по отношению к ней геометрическая фигура занимала положение, обеспечивающее получение проекций, в наибольшей степени удовлетворяющих требованиям условий решаемой задачи. Для решения одних задач достаточно заменить одну плоскость, но если это решение не обеспечивает требуемого расположения геометрической фигуры, можно провести замену двух плоскостей.

Применение этого способа характеризуется тем, что пространственное положение заданных элементов остается неизменным, а изменяется система плоскостей проекций, на которых строятся новые изображения геометрических образов. Дополнительные плоскости проекций вводятся таким образом, чтобы на них интересующие нас элементы изображались в удобном для конкретной задачи положений.

7. Форматы

ГОСТ 2.301-68 устанавливает форматы чертежной бумаги, предназначенной для выполнения чертежей и других конструкторских документов. Форматом называется размер листа бумаги (рис. 36).

 

На уроках черчения вы будете использовать лист формата А4 с размерами сторон 210X297 мм.

По внешней рамке производится обрезка листа чертежной бумаги. Но если вы решили работать на бумаге, размеры которой чуть больше размера формата, то необходимо на нем выполнить сплошной тонкой линией внешнюю рамку (рис. 37).

 

На   формате   проводится внутренняя рамка чертежа сплошной толстой основной линией на расстоянии 5 мм сверху, снизу, справа и 20 мм слева от внешней рамки. Левая сторона формата служит для подшивки чертежей. Пространство бумаги, ограниченное внутренней рамкой, называется полем чертежа

8. Способ вращения.

 Способ вращения геометрической фигуры вокруг некоторой оси состоит в том, что фигура вращается вокруг оси до требуемого положения относительно заданной неподвижной системы плоскостей проекций.     В качестве оси вращения может быть взята любая прямая. В практике же преобразования комплексного чертежа широкое распространение получило вращение вокруг проецирующих прямых и линий уровня.   Рис. 6.1.

   При вращении некоторой точки вокруг оси она описывает окружность, расположенную в плоскости, перпендикулярной оси вращения. На рис.6.1 рассмотрено вращение точки А вокруг горизонтально проецирующей оси. Плоскость вращения D параллельна плоскости П1 и на фронтальной проекции изображается следом D2. Горизонтальная проекция О1 центра вращения О совпадает с проекцией M1N1 оси, а горизонтальная проекция О1А1радиуса вращения является его натуральной величиной. Вращаясь вокруг оси, точка А перемещается по окружности, которая на А1 проецируется в окружность, а на П2 - в отрезок прямой, параллельный оси х. На рис.6.1 поворот произведен на угол j против часовой стрелки так, чтобы в новом положении точки радиус вращения был параллелен плоскости П2.     Если точку вращать вокруг оси, перпендикулярной плоскости П2, то ее фронтальная проекция будет перемещаться по окружности, а горизонтальная - параллельно оси х.     Вращение вокруг проецирующей прямой применяют при решении задачи на определение натуральной величины отрезка прямой (рис.6.2). Ось вращения выбирают так, чтобы она проходила через одну из крайних точек отрезка, например, через точку В. Тогда при повороте точки А на угол j в положение А отрезок АВ перемещается в положение АВ, параллельное плоскости П2. В этом случае отрезок будет проецироваться на П2 в натуральную величину ( ½В 2А2 ½= ½ВА ½). Одновременно в натуральную величину будет проецироваться угол а наклона отрезка АВ к плоскости П1.   Рис. 6.2.

   Натуральную величину плоской фигуры удобнее находить с помощью вращения вокруг прямой уровня. Путем такого вращения плоскость, которой принадлежит рассматриваемая фигура, поворачивают в положение, параллельное плоскости проекций. При таком положении плоскости любая принадлежащая ей фигура будет проецироваться в натуральную величину.     Вращая плоскость вокруг горизонтали, можно перевести ее в положение, параллельное плоскости П1. Вращение плоскости вокруг фронтали позволяет перевестиее в положение, параллельное плоскости П2.     На рис.6.3 рассмотрено нахождение натуральной величины треугольника АВС при помощи вращения его вокруг горизонтали.    Каждая точка плоскости треугольника АВС при вращении перемещается по окружности, перпендикулярной оси вращения. Так, точка В перемещается по окружности, плоскость D которой перпендикулярна горизонтали. Центр окружности О находится на оси вращения, а величина радиуса равна расстоянию от точки до оси вращения. Так как точка В вращается вокруг горизонтали, то окружность проецируется на П1 в отрезок прямой, перпендикулярный горизонтали, а на П2 - в эллипс, который можно не строить.   Рис. 6.3.

   На рис.6.3 видно, что и на П1, и на П2 радиус вращения проецируется с искажением. Натуральную величину радиуса находим методом прямоугольного треугольника (см. свойство ортогонального проецирования). Для этого принимаем горизонтальную проекцию О1В1 за катет прямоугольного треугольника. Второй катет должен быть равен разности координат Z концов отрезка OB (ZВ - Z0). Гипотенуза треугольника О1В1В1' (О1В1') равна R. После поворота плоскость треугольника будет параллельна П1. Следовательно,  спроецируется на П1 в натуральную величину. Горизонтальную проекцию нового, после поворота, положения точки В (В1') находим на пересечении дуги окружности, проведенной из горизонтальной проекции центра вращения О1, радиусом, равным О1В1, с горизонтальной проекцией плоскости A (А1).     Точка С также перемещается по окружности, плоскость которой Г перпендикулярна горизонтали. Точка 1 находится на горизонтали, поэтому при вращении не перемещается. Так как точки В1 и С находятся на одной прямой, то горизонтальную проекцию нового, после поворота, положения точки С найдем на пересечении прямой, проведенной через В1 и 11, с горизонтальной проекцией плоскости Г (Г1). 

9. Аксонометрия. Сущность метода и основные понятия.

от греческого «измерять») это один вид перспективы, который основан методом проецирования (получение проекций на плоскости), С помощью аксонометрии можно изобразить для наглядности пространственные тела на бумаге. Аксонометрию также называют параллельной перспективой. Так же, как и перспектива обратная, ее долгое время считали несовершенной и, следуя из этого, аксонометрические изображения воспринимали как ремесленный способ изображения, которые использовали в далекие эпохи, вообщем-то научного обоснования не имеющие. Хотя, при передаче облика, небольших и близких предметов наиболее качественное изображение получается именно при использовании аксонометрии. Аксонометрия имеет три вида: Изометрия - по всем трем координатным осям измерение одинаковое. Диметрия - по двум координатным осям измерение одинаковое, но по третьей — другое. Триметрия - по всем трем осям измерение различное. В каждом из трех видов проецирование может быть прямоугольное и косоугольное. Аксонометрию широко применяют в технической литературе и в научно-популярной, благодаря тому, что наглядны.

10. Стандартные аксонометрические проекции.

Виды стандартных аксонометрических проекций

На практике наибольшее применение нашли прямоугольные аксонометрические проекции, из которых стандартизованы изометрическая и диметрическая

п роекции, отличающиеся друг от друга расположением предмета относительно плоскости проекций П1 (ГОСТ 2.317-69). На рис. 30, а и б показано положение аксонометрических осей х', y', z'. 

 

 

 Рис. 30. Положение аксонометрических осей:

а – в изометрии; б – в диметрии

Для упрощения построений изометрическую проекцию выполняют без искажения по осям х', у', z', приняв коэффициент искажения равным 1. Диметрию выполняют без искажения по осям х' и z' и с коэффициентом искажения, равным 0,5, по оси у'. При этом изометрическая проекция получается увеличенной в 1,22 раза, а диметрическая – в 1,06 раза. На рис. 31, а и б показаны изображения детали в  изометрии и диметрии для сравнения.

 

Рис. 31.  Изображение детали:

 а – в изометрии; б – в диметрии

В разновидностях аксонометрических проекций отсутствуют перспективные искажения, вследствие чего изображение получается условным и простым. Ф

11. Чертежный шрифт. Правила нанесения размеров на чертеже.

Стандарт устанавливает десять размеров шрифта: 1,8; 2,5; 3,5; 5; 7; 10; 14; 20; 28; 40. За размер шрифта принимается величина, определяющая высоту прописной (заглавной) буквы. Шрифт может быть выполнен как с наклоном в 75°, так и без наклона.

Начертание букв чертежного шрифта. Высота буквы измеряется перпендикулярно к основанию строки. Прописные буквы. Высота прописной буквы (h) равна размеру шрифта. Нижние элементы букв Д, Ц, Щ и верхний элемент буквы Й выполняются за счет расстояний между строками. Толщину линии шрифта (d) выбирают равной 0,1 h. Используя названные параметры (h, 0,lh), выстраивают вспомогательную сетку, в которую вписывают буквы (рис. 26).

Ширина большинства прописных букв (g) равна 0,6h или 6d, что примерно соответствует размеру h ближайшего наименьшего номера шрифта. Исключение составляют буквы А, Д, М, X, Ц, Ы, Ю, ширина которых равна 0,7d, ширина букв Ж, Ф, Щ, Ш, Ъ принимается за 0,8d, а ширина букв Г, 3, С составляет 0,5d. Написание прописных букв дано на рис. 26.

Строчные буквы. Высота большинства строчных букв (с) равна 0,7h, что примерно соответствует размеру (h) ближайшего наименьшего номера шрифта. Например, для шрифта № 10 высота строчной буквы будет равна 7 мм, а для размера № 7 — 5 мм. Верхние и нижние элементы строчных букв выполняются за счет расстояний между строками и выходят на величину 3d (рис. 27).

 

Ширина большинства строчных букв равна 5d. Ширина букв а, м, ц, ъ равна 6d, букв ж, т, ф, ш, щ, ы, ю — 7d, а букв з, с — 4d. При написании букв пользуйтесь таблицей 1, в которой даны расчеты параметров шрифта.

Рассмотрев  написание букв чертежного шрифта (рис. 26, 27), нетрудно заметить, что 16 прописных и строчных букв русского алфавита имеют одинаковое начертание. Написание других прописных букв отличается от написания строчных. Начертание цифр и знаков чертежного шрифта представлено на рис. 28.

 

На начальной стадии овладения навыком написания чертежным шрифтом следует писать по вспомогательной сетке и только потом переходить к свободному письму с использованием строки, состоящей из двух параллельных линий, проведенных друг от друга на расстоянии высоты прописной или строчной буквы.

При написании чертежного шрифта следует усвоить следующие правила:

1. Все надписи на чертеже должны быть выполнены от руки. 2. Высота букв, цифр и знаков на чертежах должна быть не менее 3,5 мм. 3. Начертание букв выполняйте по частям. Движение руки при выполнении прямолинейных элементов букв осуществляется сверху вниз или слева направо, а закругленных — движением вниз и влево или вниз и вправо. Стрелка указывает направление движения рук (рис. 29). 4. Одинаковые элементы различных букв, цифр, знаков следует выполнять одним и тем же приемом, что способствует выработке автоматизма при их написании. 5. Выдерживайте заданный наклон шрифта с помощью направляющих штрихов. 6. Строго соблюдайте конструкцию каждой буквы и соотношение высоты и ширины буквы, используя таблицу 1. 7. Старайтесь выдерживать такое расстояние между буквами, чтобы зрительно оно казалось одинаковым. 8. Четкость, ясность и удобство чтения чертежа зависят от качества его выполнения и правильного выбора размеров шрифта. 9. Все надписи на чертеже должны быть аккуратными.

 

12. Сопряжения

Плавный переход одной линии в другую называется сопряжением. Общая для сопрягаемых линий точка называется точкой сопряжения, или точкой перехода. Для построения сопряжений надо найти центр сопряжения и точки сопряжений. Рассмотрим различные типы сопряжений.

Сопряжение прямого угла. Пусть необходимо выполнить сопряжение прямого угла радиусом сопряжения, равным отрезку АВ (R=AB). Найдем точки сопряжения. Для этого поставим ножку циркуля в вершину угла и раствором циркуля, равным отрезку АВ, сделаем засечки на сторонах угла. Полученные точки а и b являются точками сопряжения. Найдем центр сопряжения — точку, равноудаленную от сторон угла. Раствором циркуля, равным радиусу сопряжения, из точек а и b проведем внутри угла две дуги до пересечения друг с другом. Полученная точка О — центр сопряжения. Из центра сопряжения описываем дугу заданного радиуса от точки а до точки Ь. Обводим вначале дугу, а затем прямые линии (рис. 70).

 

Сопряжение острого и тупого углов.

Чтобы построить сопряжение острого угла, возьмем раствор циркуля, равный заданному радиусу R=AB. Поочередно поставим ножку циркуля в двепроизвольные точки на каждой из сторон острого углса. Проведем четыре дуги внутри угла, жак показано на ргас. 71, а. К ним проведем две касательные до пересечения в точке О — центре сопряжения (рис. 71, б)- Из центра сопряжения опустим перпендикуляры на стороны угла. Полученные точки а и b будут точками сопряжения (рис. 71, б). Поставив ножку циркуля в центр сопряжения (О), раствором циркуля, равным заданному радиусу сопряжения (R=AB), проведем дугу сопряжения.

 

Аналогично построению сопряжения острого угла строят сопряжение (скругление) тупого угла.

Сопряжение двух параллельных прямых.

Заданы две параллельные прямые и точка d, лежащая на одной из них (рис.72). Рассмотрим последовательность построения сопряжения двух прямых. В точке d восставим перпендикуляр до пересечения его с другой прямой. Точки d и е являются точками сопряжения. Разделив отрезок de пополам, найдем центр сопряжения. Из него радиусом сопряжения проводим дугу, сопрягающую прямые.

 

Сопряжение дуг двух окружностей дугой заданного радиуса.

Существует несколько типов сопряжения дуг двух окружностей дугой заданного радиуса: внешнее, внутреннее и смешанное. Рассмотрим пример внешнего сопряжения дуг двух окружностей дугой заданного радиуса. Заданы радиусы Rx и R2 дуг двух окружностей (длины радиусов показаны отрезками прямых). Необходимо построить их сопряжение третьей дугой радиуса R (рис. 73, а). Для нахождения центра сопряжения проводим две вспомогательные дуги: одну радиусом ОхО = Ri + R, а другую 020 = R2 + R. Точка пересечения вспомогательных дуг является центром сопряжения. Точки сопряжения К лежат в пересечении прямых dO и 020 с дугами заданных окружностей. Из центра сопряжения радиусом сопряжения проводим дугу, соединяя точки сопряжений. При обводке построений вначале изображают дугу сопряжения, а затем дуги сопрягаемых окружностей (рис. 73, б). Внутреннее сопряжение дуг двух окружностей дугой заданного радиуса.

 

При внутреннем сопряжении сопрягаемые дуги окружностей находятся внутри дуги сопряжения (рис. 74).

Даны две дуги окружностей с центром d и 02, радиусы которых соответственно равны Rx и R2. Необходимо построить сопряжение этих дуг третьей дугой радиуса R. Находим центр сопряжения. Для этого из центра d радиусом, равным R—Rb и из центра 02 радиусом, равным R—R2, описывают вспомогательные дуги до их взаимного пересечения в точке О. Точка О будет центром сопрягающей дуги радиуса R. Точки сопряжения К лежат на линиях ООх и 002, соединяющих центры дуг окружностей с центром сопряжения.

Вывод.

Определяя величину радиусов вспомогательных дуг, следует: а) при внешнем сопряжении брать сумму радиусов заданных дуг и радиуса сопряжения, т. е. Ri + R; Rj + R (рис. 73); б) при внутреннем сопряжении нужно использовать разность радиуса сопряжения R и радиусов заданных дуг окружностей, т. е. R—Rx;   R—R2   (рис. 74).

 

13. Геометрические построения.

14. Характеристика основных способов построения теней в ортогональных проекциях.

15. Виды чертежа.

Вы знаете, что фронтальная, горизонтальная и профильная проекции являются изображениями проекционного чертежа. На машиностроительных чертежах проекционные изображения внешней видимой поверхности предмета называют видами.

Вид — это изображение обращенной к наблюдателю видимой поверхности предмета.

Основные виды. Стандарт устанавливает шесть основных ви­дов, которые получаются при проецировании предмета, поме­щенного внутрь куба, шесть граней которого принимают за плоскости проекций (рис. 82). Спроецировав предмет на эти грани, их разворачивают до совмещения с фронтальной плоскостью проекций (рис. 83). На производственных чертежахизделие ка­кой-либо сложной формы может быть изображено в шести ос­новных видах.

Рис. 82. Получение основных видов

 

Вид спереди (главный вид) размещается на месте фронталь­ной проекции. Вид сверху размещается на месте горизонтальной проекции (под главным видом). Вид слева располагается на мес­те профильной проекции (справа от главного вида). Вид спра­ва размещается слева от главного вида. Вид снизу находится над главным видом. Вид сзади размещается справа от вида слева.

Основные виды, так же как и проекции, располагаются в про­екционной связи. Число видов на чертеже выбирают минималь­ным, но достаточным для того, чтобы точно представить форму изображенного объекта. На видах, при необходимости, допуска­ется показывать невидимые части поверхности предмета с по­мощью штриховых линий (рис. 84).

Главный вид должен содержать наибольшую информацию о предмете. Поэтому деталь необходимо располагать по отноше­нию к фронтальной плоскости проекций так, чтобы видимая по­верхность ее могла быть спроецирована с наибольшим количест­вом элементов формы. Кроме этого, главный вид должен давать ясное представление об особенностях формы, показывая ее силу­эт, изгибы поверхности, уступы, выемки, отверстия, что обеспе­чивает быстрое узнавание формы изображенного изделия.

Рис. 83. Основные виды

Рис. 84. Использование штриховой линии на чертеже для изображения невидимых частей детали

Рис. 85. Местные виды

 

Расстояние между видами на чертеже выбирают с таким рас­четом, чтобы оставалось место для нанесения размеров.

Местный вид. Кроме основных видов, на чертежах используют местный вид — изображение отдельного, ограниченного места видимой поверхности детали.

Местный вид ограничивается линией обрыва (рис. 85). Если местный вид располагается в проекционной связи с одним из основных видов (рис. 85, а), то он не обозначается. Если местный вид расположен не в проекционной связи с одним из основных видов, то он обозначается стрелкой и буквой русского алфавита (рис. 85, б).

На местных видах можно проставлять размеры.

16. Виды аксонометрии. Построение окружности в аксонометрии.

17. Развертка поверхностей.

18. Сечения

ечением называется изображение фигуры, полученной при мысленном рассечении предмета секущей плоскостью. На сечениях показывается то, что расположено в секущей плоскости.

Сечения являются проекционными изображениями. Это означает, что фигуры сечений проецируются на плоскость проекций. По расположению сечений относительно видов их различают на наложенные и вынесенные. Наложенные сечения (рис. 168, б) располагаются непосредственно на видах (изображение фигуры сечения как бы накладывается на изображение вида), а вынесенные сечения (рис. 168, в) располагаются вне изображения видов. При выборе сечений предпочтение отдается вынесенным сечениям, поскольку они не загромождают вид.

 

Рассмотрим последовательность выполнения вынесенных сечений.

Вначале изучаем форму детали, находим конструктивные элементы, которые должны быть выявлены с помощью сечений. Мысленно рассекаем деталь секущей (секущими) плоскостью (плоскостями) и представляем полученную фигуру сечения. Выбираем место для построения сечения (сечений), наносим оси симметрии для симметричных изображений. Вычерчиваем фигуру сечения. При построении изображения фигуры (фигур) сечения размеры следует снимать с других изображений чертежа — видов, разрезов. Контур фигуры вынесенного сечения обводят сплошной толстой основной линией, а контур наложенного — сплошной тонкой. Фигуру сечения выделяют штриховкой, которую наносят сплошными тонкими линиями, проведенными под углом 45° к основной надписи чертежа (рис. 168, б, в).

Рассмотрим правила обозначения вынесенных сечений. Вынесенные сечения могут располагаться в разрыве между частями одного и того же вида (рис. 169 а, б), на свободном месте (рис. 169, в), на продолжении штрихпунктирной линии (рис. 169, г).

 

Сечения симметричной формы, расположенные в разрыве между частями одного и того же вида, не обозначаются (рис. 169, а). Если сечение несимметричной формы располагается в разрыве, то штрихами разомкнутой линии, длина которых равна приблизительно 10 мм, показывают положение секущей плоскости (рис.  169,  б). К штрихам подводят стрелки, указывающие направление взгляда. Стрелки наносят на расстоянии 2-3 мм от внешнего (по отношению к изображаемой детали) конца штриха (рис. 170).

 

Так же обозначают сечение, если оно расположено на свободном месте чертежа. С внешних сторон стрелок ставят одну и ту же прописную букву русского алфавита. Но в отличие от предыдущего над сечением пишут те же буквы через тире, например, А-А (рис. 169, в, рис. 171). Каждое  сечение  чертежа  имеет  свое   буквенное обозначение (рис. 167, в).

Если сечение представляет собой симметричную фигуру, то его можно расположить на продолжении линии сечения, которая в этом случае задается штрихпунктирной линией. В этом случае стрелок и букв не наносят (рис. 169, г).

Особые случаи выполнения сечений.

Если секущая плоскость проходит через ось цилиндрической или конической поверхности, ограничивающей отверстие или углубление, то их контур на сечении показывают полностью (рис. 171).

 

Допускается на сечениях наносить размеры (рис. 168).

19. разрезы

Разрезы используются для показа внутренней формы изделия.

Разрезом называется изображение, полученное при мысленном рассечении детали одной или несколькими секущими плоскостями. В разрезах показывается то, что получается в секущей плоскости и за ней.

На рис. 176 показано получение разреза. Деталь мысленно рассекается секущей плоскостью, передняя часть детали, расположенная между наблюдателем и секущей плоскостью, как бы удаляется. Оставшаяся часть проецируется на фронтальную плоскость проекции. При этом фигура сечения, находящаяся в секущей плоскости и входящая в состав  разреза, обводится сплошной основной толстой линией, а также выделяется штриховкой.

 

То, что находится за секущей плоскостью, считается видимым и поэтому изображается слошной толстой основной линией (рис. 177).

 

На чертежах используются простые и сложные разрезы. Простыми разрезами называются такие разрезы, которые получены при мысленном рассечении детали одной секущей плоскостью. Сложными разрезами называются разрезы, полученные при мысленном рассечении детали двумя и большим количеством плоскостей (они не изучаются по школьной программе).

Познакомимся с простыми разрезами: фронтальным, горизонтальным, профильным.

  • Фронтальный разрез получается при мысленном рассечении детали секущей плоскостью, параллельной фронтальной плоскости проекции (рис. 176).

  • Горизонтальный разрез получается при мысленном рассечении детали секущей плоскостью, параллельной горизонтальной плоскости проекций (рис. 178).

  • Профильный разрез получаем при мысленном рассечении детали секущей плоскостью, параллельной профильной плоскости проекций (рис. 179).

Правила выполнения разрезов.

1. Разрезы выполняются в проекционной связи с другими изображениями чертежа. 2. Разрезы выполняются вместо и на месте соответствующего вида, например: фронтальный разрез выполняется вместо вида спереди и располагается на его месте, горизонтальный разрез выполняется вместо вида сверху и на его месте. 3. Построение какого-либо разреза не влечет за собой изменения других видов.

Правила обозначения разрезов.

Разрезы на чертеже, как правило, обозначаются. Однако есть случаи, когда обозначение разреза не наносится. Рассмотрим правила обозначения разрезов:

1. Если секущая плоскость совпадает с плоскостью симметрии детали, то разрез на чертеже не обозначается (рис. 176, 178, 179). 2. Если секущая плоскость не совпадает с плоскостью симметрии детали, то разрез обозначается следующим образом. Положение секущей плоскости показывают штрихами разомкнутой линии. К штрихам разомкнутой линии на расстоянии 2-3 мм от внешнего края ставят стрелки, указывающие направление взгляда (рис. 180). С внешней стороны стрелок пишут прописные буквы русского алфавита. Изображение разреза подписывается надписью типа А-А, Б-Б (рис. 180).

 

20. Технический рисунок.

Технический рисунок — наглядное изображение предмета, выполненное по правилам аксонометрических проекций без чертежных инструментов (от руки), в глазомерном масштабе, с соблюдением пропорциональных соотношений размеров.

Форма предмета на техническом рисунке выявляется с помощью оттенения. Оно осуществляется приемами шатировки (штрихами), шраффировки (штриховка в виде сетки) и точечным оттенением (рис. 99).

 

При выполнении оттенения принято считать, что свет падает на предмет слева сверху. Освещенные поверхности не заштриховываются, а затененные покрывают штриховкой. Чем темнее часть поверхности, тем более частой должна быть штриховка.

21. Тела вращения. Аксонометрические построения тел вращения.

22. Основы построения аксонометрических проекций.

Аксонометрические проекции представляют собой наглядное и достаточно точное изображение предметов. Слово «аксонометрия» — греческое. Оно состоит из двух слов: ахсоп — ось и metreo — измерение, что означает измерение по осям (или измерение параллельно осям).

Сравните изображения куба, приведенные на рис. 83. Оба рисунка позволяют получить представление о форме куба, несмотря на то что для их построения использовались центральное проецирование, или перспектива (рис. 83, а), и параллельное проецирование (рис. 83, б).

 

Наглядные изображения предметов, используемые в технике, выполняют по правилам параллельного проецирования. Наиболее удобными для построения наглядных изображений являются аксонометрические проекции.

23. Построение сечений.

24. Воссоздание формы предмета по чертежу (в трех проекциях) и изображение ее в аксонометрических проекциях.

25. Построение косых сечений тел вращения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]