Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Physics.docx
Скачиваний:
80
Добавлен:
02.08.2019
Размер:
73.97 Кб
Скачать

Вопрос №1. Перемещение, скорость, путь, ускорение. Вычисление пройденного пути при равномерном и равноускоренном прямолинейном движении.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением. Перемещение есть векторная величина. ( )

Пройденный путь S равен длине дуги траектории, пройденной телом за некоторое время t. Путь – скалярная величина.Ускорение – это величина, которая характеризует быстроту изменения скорости. Скорость — векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта.Прямолинейным равномерным движением называется механическое движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. ( ) Равноускоренным движением называется такое движение, при котором вектор ускорения остается неизменным по модулю и направлению. ( )

Вопрос №2. Криволинейное движение. Нормальное и тангенциальное ускорения. Кривизна траектории.

Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии.

Нормальное ускорение, составляющая ускорения точки при криволинейном движении, направленная по главной нормали к траектории в сторону центра кривизны; Нормальное ускорение называется также центростремительным ускорением. Численно Нормальное ускорение равно v2/r, где v — скорость точки, r — радиус кривизны траектории. При движении по окружности Нормальное ускорение может вычисляться по формуле rw2, где r — радиус окружности, w— угловая скорость вращения этого радиуса. В случае прямолинейного движения Нормальное ускорение равно нулю.

Тангенциа́льное ускоре́ние — компонента ускорения, направленная по касательной к траектории движения. Совпадает с направлением вектора скорости при ускоренном движении и противоположно направлено при замедленном. Характеризует изменение модуля скорости.

Принято описывать траекторию материальной точки при помощи радиус-вектора, направление, длина и начальная точка которого зависят от времени. При этом кривая, описываемая концом радиус-вектора в пространстве может быть представлена в виде сопряжённых дуг различной кривизны, находящихся в общем случае в пересекающихся плоскостях. При этом кривизна каждой дуги определяется её радиусом кривизны, направленном к дуге из мгновенного центра поворота, находящегося в той же плоскости, что и сама дуга. При том прямая линия рассматривается как предельный случай кривой, радиус кривизны которой может считаться равным бесконечности.И потому траектория в общем случае может быть представлена как совокупность сопряжённых дуг.

Вопрос №3. Угловые скорость и ускорение. Вычисление угла поворота тела при равномерном и равноускоренном вращении. Связь линейных и угловых характеристик.

Углова́я ско́рость — векторная физическая величина, характеризующая скорость вращения тела. Вектор угловой скорости по величине равен углу поворота тела в единицу времени, а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону. Углово́е ускоре́ние — псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости твёрдого тела.При вращении тела вокруг неподвижной оси, угловое ускорение по модулю равно

Вопрос №4. 1-ый закон Ньютона. Инерциальные системы отсчета. Преобразования координат и скоростей Галилея. Импульс. Сила. 2-ой и 3-й законы Ньютона

Первый закон Ньютона: всякая мате­риальная точка (тело) сохраняет состоя­ние покоя или равномерного прямолиней­ного движения до тех пор, пока воздейст­вие со стороны других тел не заставит ее изменить это состояние. Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью. По­этому первый закон Ньютона называют также законом инерции. Сила — это векторная величина, являюща­яся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и раз­меры. Импульс— векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этой точки на её скорость v, направление импульса совпадает с направлением вектора скорости. Второй закон Ньютона: В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе. Третий закон Ньютона: Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Вопрос №5. Закон сохранения импульса. Центр масс тела.

Центром масс системы материальных точек называется воображаемая точка С, положение которой характеризует распре­деление массы этой системы Зако́н сохране́ния и́мпульса утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Вопрос №6. Принцип реактивного движения. Движение тел с переменной массой. Формула Мещерского. Формула Циолковского

Под реактивным понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела. При этом возникает т.н. реактивная сила, сообщающая телу ускорение.

Уравнение Мещерского — основное уравнение в механике тел переменной массы:

Формула Циолковского определяет скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, неизменной по направлению, при отсутствии всех других сил. Эта скорость называется характеристической:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]