Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан.docx
Скачиваний:
3
Добавлен:
02.08.2019
Размер:
185.67 Кб
Скачать

1.Числовая последовательность — это последовательность элементов числового пространства.

Определение

Пусть множество X — это либо множество вещественных чисел , либо множество комплексных чисел . Тогда последовательность элементов множества X называется числовой последовательностью.

Суммой числовых последовательностей (xn) и (yn) называется числовая последовательность (zn) такая, что zn = xn + yn.

Разностью числовых последовательностей (xn) и (yn) называется числовая последовательность (zn) такая, что zn = xnyn.

Произведением числовых последовательностей xn и yn называется числовая последовательность (zn) такая, что .

Частным числовой последовательности xn и числовой последовательности yn, все элементы которой отличны от нуля, называется числовая последовательность

2. Ограниченная сверху последовательность — это последовательность элементов множества X, все члены которой не превышают некоторого элемента из этого множества. Этот элемент называется верхней гранью данной последовательности.

(xn) ограниченная сверху

Ограниченная снизу последовательность — это последовательность элементов множества X, для которой в этом множестве найдётся элемент, не превышающий всех её членов. Этот элемент называется нижней гранью данной последовательности.

(xn) ограниченная снизу

Ограниченная последовательность (ограниченная с обеих сторон последовательность) — это последовательность, ограниченная и сверху, и снизу.

(xn) ограниченная

Неограниченная последовательность — это последовательность, которая не является ограниченной.

(xn) неограниченная

3. Предел последовательности — это объект, к которому члены последовательности приближаются с ростом номера. Так в произвольном топологическом пространстве пределом последовательности называется элемент, в любой окрестности которого лежат все члены последовательности, начиная с некоторого. В частности для числовых последовательностей предел — это число, в любой окрестности которого лежат все члены последовательности начиная с некоторого.

Частичный предел последовательности — это предел одной из её подпоследовательностей. У сходящихся числовых последовательностей он всегда совпадает с обычным пределом.

Верхний предел последовательности — это наибольшая предельная точка этой последовательности.

Нижний предел последовательности — это наименьшая предельная точка этой последовательности.

4. Сходящаяся последовательность — это последовательность элементов множества X, имеющая предел в этом множестве.

  • Свойства.  Всякая бесконечно малая последовательность является сходящейся. Её предел равен нулю.

  • Удаление любого конечного числа элементов из бесконечной последовательности не влияет ни на сходимость, ни на предел этой последовательности.

  • Любая сходящаяся последовательность элементов хаусдорфова пространства имеет только один предел.

  • Любая сходящаяся последовательность ограничена. Однако не любая ограниченная последовательность сходится.

  • Последовательность сходится тогда и только тогда, когда она является ограниченной и при этом её верхний и нижний пределы совпадают.

  • Если последовательность (xn) сходится, но не является бесконечно малой, то, начиная с некоторого номера, определена последовательность (1 / xn), которая является ограниченной.

  • Сумма сходящихся последовательностей также является сходящейся последовательностью.

  • Разность сходящихся последовательностей также является сходящейся последовательностью.

  • Произведение сходящихся последовательностей также является сходящейся последовательностью.

  • Частное двух сходящихся последовательностей определено, начиная с некоторого элемента, если только вторая последовательность не является бесконечно малой. Если частное двух сходящихся последовательностей определено, то оно представляет собой сходящуюся последовательность.

  • (Это не все свойства их очень много )

5. Бесконечно малая последовательность — это последовательность, предел которой равен нулю.

бесконечно большая последовательность — это последовательность, предел которой равен бесконечности.

  • Свойства.бмп Сумма двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

  • Разность двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

  • Алгебраическая сумма любого конечного числа бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

  • Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

  • Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

  • Любая бесконечно малая последовательность ограничена.

6.Число e

Последовательность , имеет конечный предел, называемый числом е:

7. Область определения функции — множество, на котором задаётся функция

Функция — математическое понятие, отражающее связь между элементами множеств. Более точно, это «закон», по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).

8. Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций:

ВИДЫ (тыкай мышкой)

9. 1)Монотонность функции.

Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

2) Четность (нечетность) функции.

Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x). График четной функции симметричен относительно оси ординат.

Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x). График нечетной функции симметричен относительно начала координат.

3) Ограниченная и неограниченная функции.

Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

4)Периодическость функции.

Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

10. Определение предела по Коши. Число A называется пределом функции f (x) в точке a, если эта функция определена в некоторой окрестности точки a за исключением, быть может, самой точки a, и для каждого ε > 0 существует δ > 0 такое, что для всех x, удовлетворяющих условию |x – a| < δ, x ≠ a, выполняется неравенство |f (x) – A| < ε.

Определение предела по Гейне. Число A называется пределом функции f (x) в точке a, если эта функция определена в некоторой окрестности точки a за исключением, быть может, самой точки a, и для любой последовательности такой, что сходящейся к числу a, соответствующая последовательность значений функции сходится к числу A.

11. арифметические операции над пределами). Если limx af(x) = A, limx ag(x) = B, то

  1. limx a[f(x) g(x)]=A B,

  2. limx af(x)g(x) = AB

  3. limx af(x)/g(x) = A/B, B  0

12. бесконечно малая функция). Функция называется бесконечно малой в точке a или при x a, если

limx af(x) = 0

бесконечно большая функция). Функция называется бесконечно большой при x a или в точке a, если для любого положительного числа  найдется такое положительное (), что для всех x a и удовлетворяющих условию |x-a|< будет выполнено неравенство |f(x)|> .

Аналогично можно дать определение бесконечно большой при x. Приведем его в символической записи:

limxf(x) = >0 ()>0  x:|x|> |f(x)|>.

Предложение . (x) бесконечно малая функция при x a  1/(x) — бесконечно большая при x a