Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на физику.docx
Скачиваний:
3
Добавлен:
31.07.2019
Размер:
423.14 Кб
Скачать

1. Интерференция света — нелинейное сложение интенсивностей двух или нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной. При интерференции света происходит перераспределение энергии в пространстве. - условие максимума, - условие минимума.

2. Когерентные волны - волны, характеризующиеся одинаковой частотой и постоянством разности фаз в заданной точке пространства. Когерентность волн является необходимым условием получения устойчивой интерференционной картины.

3. Два одинаковых синфазных (т.е. колеблющихся в фазе) монохроматических точечных источника S1 и S2 (см.рисунок), находятся на расстоянии d друг от друга. Если расстояние l до экрана, где наблюдаются интерференционные полосы, много больше расстояния между источниками( ), то амплитуды обеих волн в точке наблюдения практически одинаковы и для напряженности поля в точке P можно написать

где r1 и r2 - расстояние от источников до точки наблюдения P (см.рисунок).

К интерференции волн, испускаемых точечными источниками S1 и S2

Величину называют разностью хода интерферирующих волн. Интенсивность результирующего колебания пропорциональна квадрату амплитуды, поэтому

где I0 - интенсивность колебаний от одного источника. Освещенность экрана в минимумах равна нулю, а в максимумах - учетверенному значению освещенности, создаваемой одним источником. Положение максимумов определяется условием , где целое число m = 0,1,2,... называется порядком интерференции. Учитывая, что , условие максимумов можно записать в виде - разность хода равна целому числу длин волн.

4. Условия образования максимумов и минимумов в интерференционной картине. Результат сложения волн, приходящих в точку наблюдения М от двух когерентных источников О1 и О2 зависит от разности фаз между ними (см. рис 1.)

Расстояния, проходимые волнами от источников до точки наблюдения, равны соответственно d1и d2. Величина называется геометрической разностью хода d = d2- d1. Эта величина и определяет разность фаз колебаний в точке М. Возможны два предельных случая наложения волн.

Условия максимумов

Условия минимумов

Разность хода d = k·, где k = 0, 1, 2...

Разность ходаd = ·

Разность фаз·k·

Разность фаз·

Колебания в точке наложения волн имеют одинаковую фазу.

Колебания в точке наложения волн имеют противоположную фазу.

Наблюдается усиление колебаний

Наблюдается ослабление колебаний.

5 При освещении тонкой плёнки можно наблюдать интерференцию световых волн, отражённых от верхней и нижней поверхности плёнок . Для белого света, представляющего собой смешение электромагнитных волн из всего оптического спектра интерференционные полосы приобретают окраску. Это явление получило название цветов тонких плёнок.

ΔL = L2 − L1 = kλ — условие максимума;

ΔL = L2 − L1 = (2k + 1) * λ / 2 — условие минимума

6 В pазных местах клина имеем pазличную pазность хода отpаженных лучей. Оптическая pазность хода опpеделяется следующей фоpмулой:

7.Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает/

Принцип Гюйгенса — Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых. Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн. Для того чтобы найти амплитуду световой волны от точечного моно­хроматического источника света А в произвольной точке О изо­тропной среды, надо источник света окружить сферой радиусом r=ct. Интерференция волны от вторичных источников, располо­женных на этой поверхности, определяет амплитуду в рассмат­риваемой точке О, т. е. необходимо произвести сложение коге­рентных колебаний от всех вторичных источников на волновой поверхности. Так как расстояния от них до точки О различны, то колебания будут приходить в различных фазах. Наименьшее расстояние от точки О до волновой поверхности В равно r0. Первая зона Френеля ограничивается точками волновой поверхности, рассто­яния от которых до точки О равны:  ,где  — длина световой волны. Вторая зона  .Аналогично определяются границы других зон.

8 Согласно принципу Гюйгенса-Френеля световое поле в некоторой точке пространства является результатом интерференции вторичных источников. Френель предложил оригинальный и чрезвычайно наглядный метод группировки вторичных источников. Этот метод позволяет приближенным способом рассчитывать дифракционные картины, и носит название метода зон Френеля.

9. 1. Дифракция на круглом отверстии. Сферическая волна, распространяющаяся из точечного источника S, встречает на своем пути экран с круглым отверстием. Дифракционную картину наблюдаем на экране Э в точке В, лежащей на линии, соединяющей S с центром отверстия (рис. 259). Экран параллелен плоскости отверстия и находится от него на расстоянии b. Разобьем открытую часть волновой поверхности Ф на зоны Френеля. Вид дифракционной картины зависит от числа зон Френеля, открываемых отверстием. Амплитуда результирующего колебания, возбуждаемого в точке В всеми зонами (см. (177.1) и (177.6)),

где знак плюс соответствует нечетным m и минус — четным т.

Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсив­ность) в точке В будет больше, чем при свободном распространении волны; если четное, то амплитуда (интенсивность) будет равна нулю. Если отверстие открывает одну зону Френеля, то в точке В амплитуда А=А1, т. е. вдвое больше, чем в отсутствие непрозрачного экрана с отверстием. Интенсивность света больше соответственно в четыре раза. Если отверстие открывает две зоны Френеля, то их действия в точке В практически уничтожат друг друга из-за интерференции. Таким образом, дифракционная картина от круглого отверстия вблизи точки Вбудет иметь вид чередующихся темных и светлых колец с центрами в точке В (если т четное, то в центре будет темное кольцо, если m нечетное — то светлое кольцо), причем интенсивность в максимумах убывает с расстоянием от центра картины.

2. Дифракция на диске. Сферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск. Дифракционную картину наблюдаем на экране Э в точке В, лежащей на линии, соединяющей S с центром диска (рис. 260). В данном случае закрытый диском участок волнового фронта надо исключить из рассмотрения и зоны Френеля строить начиная с краев диска. Пусть диск закрывает m первых зон Френеля. Тогда амплитуда результирующего колебания в точке В равна

или

так как выражения, стоящие в скобках, равны нулю. Следовательно, в точке В всегда наблюдается интерференционный максимум (светлое пятно), соответствующий поло­вине действия первой открытой зоны Френеля. Центральный максимум окружен концентрическими с ним темными и светлыми кольцами, а интенсивность в максимумах убывает с расстоянием от центра картины.

С увеличением радиуса диска первая открытая зона Френеля удаляется от точки В и увеличивается угол т (см. рис. 258) между нормалью к поверхности этой зоны и направлением на точку В. В результате интенсивность центрального максимума с увеличением размеров диска уменьшается. При больших размерах диска за ним наблюдается тень, вблизи границ которой имеет место весьма слабая дифракционная картина. В данном случае дифракцией света можно пренебречь и считать свет распространяющимся прямолинейно.

Отметим, что дифракция на круглом отверстии и дифракция на диске впервые рассмотрены Френелем.

10. Дифракция Фраунгофера на одной щели и дифракционной решетке. Рассмотрим дифракцию Фраунгофера от бесконечно длинной щели (для этого практически достаточно, чтобы длина щели была значительно больше ее ширины). Пусть плоская монохроматическая световая волна падает нормально плоскости узкой щели шириной а (рис. 261, а). Оптическая разность хода между крайними лучами МС и ND, идущими от щели в произвольном направлении j,

                                                        (1)

где F — основание перпендикуляра, опущенного из точки М на луч ND. Разобьем открытую часть волновой поверхности в плоскости щели MN на зоны Френеля, имеющие вид полос, параллельных ребру М щели. Ширина каждой зоны выбирается так, чтобы разность хода от краев этих зон была равна l/2, т. е. всего на ширине щели уместится D:l/2 зон. Так как свет на щель падает нормально, то плоскость щели совпадает с волновым фронтом; следовательно, все точки волнового фронта в плоскости щели будут колебаться в одинаковой фазе. Амплитуды вторичных волн в плоскости щели будут равны, так как выбранные зоны Френеля имеют одинаковые площади и одинаково наклонены к направлению наблюдения. Из выражения (1) вытекает, что число зон Френеля, укладывающихся на ширине щели, зависит от угла j. От числа зон Френеля, в свою очередь, зависит результат наложения всех вторичных волн. Из приведенного построения следует, что при интерференции света от каждой пары соседних зон Френеля амплитуда результирующих колебаний равна нулю, так как колебания от каждой пары соседних зон взаимно гасят друг друга. Следовательно, если число зон Френеля четное, то

      

и в точке В наблюдается дифракционный минимум (полная темнота), если же число зон Френеля нечетное, то

 

Большое практическое значение имеет дифракция, наблюдаемая при прохождении света через одномерную дифракционную решетку - систему параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками. Рассматривая дифракцию Фраунгофера на щели, мы видели, что распределение интенсивности на экране определяется направлением дифрагированных лучей. Это означает, что перемещение щели параллельно самой себе влево или вправо не изменит дифракционной картины. Следовательно, если перейти от одной щели ко многим (к дифракционной решетке), то дифракционные картины, создаваемые каждой щелью в отдельности, будут одинаковыми.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т. е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

Р ассмотрим дифракционную решетку. На рис. 7.1 для наглядности показаны только две соседние щели MN и CD. Если ширина каждой щели равна а, а ширина непрозрачных участков между щелями b, то величина d=a+b называется постоянной (периодом) дифракционной решетки. Пусть плоская монохроматическая волна падает нормально к плоскости решетки. Так как щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, будут для данного направления   одинаковы в пределах всей дифракционной решетки:

 (1)

Очевидно, что в тех направлениях, в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, т. е. прежние (главные) минимумы интенсивности будут наблюдаться в направлениях, определяемых условием    (m=1,2,3,…) (2):

 (m = 1, 2, 3, ...). 

Кроме того, вследствие взаимной интерференции световых лучей, посылаемых двумя щелями, в некоторых направлениях они будут гасить друг друга, т. е. возникнут дополнительные минимумы. Очевидно, что эти дополнительные минимумы будут наблюдаться в тех направлениях, которым соответствует разность хода лучей  , ..., посылаемых, например, от крайних левых точек М и С обеих щелей. Таким образом, с учетом (1) условие дополнительных минимумов:

 (m = 1, 2, 3, ...)  Наоборот, действие одной щели будет усиливать действие другой, если

 (m=0, 1, 2, ...), (3) т. е. выражение (3) задает условие главных максимумов. Таким образом, полная дифракционная картина для двух щелей определяется из условий:

 - главные минимумы; - дополнительные минимумы;

 - главные максимумы,

т. е. между двумя главными максимумами располагается один дополнительный минимум. Аналогично можно показать, что между каждыми двумя главными максимумами при трех щелях располагается два дополнительных минимума, при четырех щелях - три и т. д.

11. Дифракция на пространственной решетке формула Вульфа-Брэгга

Дифракционную картину могут дать не только рассмотренные выше одномерные структуры, но также двумерные и трехмерные периодические структуры, например, кристаллические тела. Однако период кристаллических тел d мал, составляет единицы ангстрем (1  =10-4 мкм), т.е. значительно меньше длин волн видимого света (l»0,4-0,8 мкм). Поэтому для видимого света кристаллы являются однородной средой, и дифракция не наблюдается.

Рис.6

Вто же время для значительно более коротковолнового рентгеновского излучения(l »10-9 - 10-11 м) кристаллы представляют собой естественные дифракционные решетки (см. рис.6).

Абсолютный показатель преломления всех сред для рентгеновского излучения близок к единице, поэтому оптическая разность хода между лучами

1- и 2-, отражающимися от кристаллографических плоскостей D=CD+DE=2dsinq, где d - расстояние между плоскостями, в которых лежат узлы (атомы) кристаллической решетки, q - угол скольжения лучей.

Условию интерференционных максимумов удовлетворяет [см.(3,15)] формула Вульфа-Брэгга

2dsinq =±ml , m=1,2,3- (13), где m - порядок дифракционного максимума.

Формула Вульфа - Брэггов используется при решении двух важных задач:

1. Наблюдая дифракцию рентгеновских лучей известной длины волны на кристаллической структуре неизвестного строения и измеряя   и m, можно найти межплоскостное расстояние (d), т. е. определить структуру вещества. Этот метод лежит в основе рентгеноструктурного анализа. Формула Вульфа - Брэггов остается справедливой и при дифракции электронов и нейтронов. Методы исследования структуры вещества, основанные на дифракции электронов и нейтронов, называются соответственно электронографией и нейтронографией.

2. Наблюдая дифракцию рентгеновских лучей неизвестной длины волны на кристаллической структуре при известном d и измеряя   и m, можно найти длину волны падающего рентгеновского излучения. Этот метод лежит в основе рентгеновской спектроскопии.

13. Дисперсія світла — залежність показника заломлення (або діелектричної проникності) середовища від частоти хвилі світла.

14. Поглощением (абсорбцией) света называется явление потери энергии световой волной, проходящей через вещество, вследствие преобразования энергии волны в другие формы. В результате поглощения интенсивность света при прохождении через вещество уменьшается.

Поглощение света в веществе описывается законом Бугера:

г де и I-интенсивности плоской монохроматической световой волны на входе и выходе слоя поглощающего вещества толщиной x, α - коэффициент поглощения, зависящий от дайны волны света, химической природы и состояния вещества и не зависящий от интенсивности света. При    интенсивность света I по сравнению с уменьшается в e раз. Коэффициент поглощения зависит от длины волны   (или частоты  ) и дня различных веществ различен.

Н а рис.9.4 представлены типичная зависимость коэффициента поглощения   от длины волны света   и зависимость показателя преломления n от  в области полосы поглощения. Из рисунка следует, что внутри полосы поглощения наблюдается аномальная дисперсия (n убывает с уменьшением  ). Однако поглощение вещества должно быть значительным, чтобы повлиять на ход показателя преломления

Явление поглощения широко используется в абсорбционном спектральном анализе смеси газов, основанном на измерениях спектров частот и интенсивностей линий (полос) поглощения.

Эффект Доплера в акустикеобъясняется тем, что частота колебаний, воспринимаемых приемником, определяет­ся скоростями движения источника коле­баний и приемника по отношению к среде, являющейся носителем звуковых волн. Эффект Доплера наблюдается также и для световых волн. Так как особой сре­ды, служащей носителем электромагнит­ных волн, не существует, то частота свето­вых волн, воспринимаемых приемником, определяется только от­носительной скоростью источника и при­емника.