Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
xe.doc
Скачиваний:
8
Добавлен:
29.07.2019
Размер:
700.42 Кб
Скачать

Понятие науки

Под содержанием науки следует понимать ее определение, включая цели, идеологический базис (или, может быть, более узко - парадигму) науки, т.е. комплекс принятых идеи, взглядов на то, что такое наука, каковы её цели, способы построения и развития, и т. п. В этот же круг идей необходимо, по-видимому, включить и проблемы научной этики - системы принятых, но юридически не обязательных правил, регулирующих взаимоотношения людей в сфере научной деятельности. Научной этике в критических, исторических и философских трудах уделяется обычно мало внимания, хотя она, в силу важного места, занимаемого наукой в современном обществе, является существенной частью взаимоотношения людей. Мы уделим этому вопросу более глубокое внимание, поскольку в развитии современной науки наблюдаются довольно грубые нарушения этических норм, сказывающиеся на темпах её развития. Всякая идеология является, по существу, оформлением опытных данных о взаимодействии людей с природой и между собой. Мы привыкли относиться к постулированным и уже апробированным правилам или законам, как к окончательной истине, забывая о том, что установление истины сопровождается многочисленными заблуждениями. Проверка идеологических принципов опытным путём в силу ряда причин затруднена. Поэтому до сих пор не удалось прийти к однозначному решению этих вопросов, а это сказывается, в свою очередь, и на развитии самих наук.

Большинство вопросов, связанных с идеологией науки, подробно изложено в многочисленных и доступных философских трудах. Мы остановимся лишь на конкретных проблемах, важных для развития нашей темы. Отметим только, что хотя идеология науки имеет корни в античном естествознании, формулировки, принятые в настоящее время, восходят, в основном, к средневековью, к трудам Ф. Бекона, Р. Декарта и некоторых других.

Наука - сфера человеческой деятельности, функция которой – выработка и теоретическая систематизация объективных знаний о действительности; одна из форм общественного сознания; включает как деятельность по получению нового знания, так и ее результат – сумму знаний, лежащих в основе научной картины мира; обозначение отдельных отраслей научного знания. Непосредственные цели – описание, объяснение и предсказание процессов и явлений действительности, составляющих предмет ее изучения, на основе открываемых ею законов. Система наук условно делится на естественные, общественные, гуманитарные и технические науки. Зародившись в древнем мире в связи с потребностями общественной практики, начала складываться с 16...17 вв. и в ходе исторического развития превратилась в важнейший социальный институт, оказывающий значительное влияние на все сферы общества и культуру в целом.

Структура и функции науки

В зависимости от сферы бытия, а следовательно, и от рода изучаемой действительности различаются три направления научного знания: естествознание - знание о природе, обществознание, знание о различных видах и формах общественной жизни, а также знание о человеке как мыслящем существе. Естественно, эти три сферы не являются и не должны рассматриваться как три части единого целого, которые лишь рядоположены, соседствуют друг с другом. Граница между этими сферами относительна. Вся совокупность научных знаний о природе формируется естествознанием. Его структура является непосредственным отражением логики природы. Общий объем и структура естественнонаучных знаний велики и разнообразны.

Сюда включается знание о веществе и его строении, о движении и взаимодействии веществ, о химических элементах и соединениях, о живой материи и жизни, о Земле и Космосе. От этих объектов естествознания берут свое начало и фундаментальные естественнонаучные направления.

Вторым фундаментальным направлением научного знания является обществознание. Предметом его являются общественные явления и системы, структуры, состояния, процессы. Общественные науки дают знания об отдельных разновидностях и всей совокупности общественных связей и отношений. По своему характеру научные знания об обществе многочисленны, но они могут быть сгруппированы по трем направлениям: социологические, предметом которых является общество как целое; экономические - отражают трудовую деятельность людей, отношения собственности, общественное производство, обмен, распределение и основанные на них отношения в обществе; государственно-правовые знания - имеют в качестве своего предмета государственно-правовые структуры и отношения в общественных системах, их рассматривают все науки о государстве и политические науки.

Третье фундаментальное направление научных знаний составляют научные знания о человеке и его мышлении. Человек является объектом изучения большого числа разнообразных наук, которые рассматривают его в различных аспектах. Наряду с указанными основными научными направлениями к отдельной группе знаний должны быть отнесены знания науки о себе самой. Появление этой отрасли знания относится к 20-м годам нашего столетия и означает, что наука в своем развитии поднялась до уровня понимания своей роли и значения в жизни людей. Науковедение сегодня считается самостоятельной, быстро развивающейся научной дисциплиной.

В тесной связи со структурой научного знания находится проблема функций науки. Их выделяется несколько:

1. описательная - выявление существенных свойств и отношений действительности;

2. систематизирующая - отнесение описанного по классам и разделам;

3. объяснительная - систематическое изложение сущности изучаемого объекта, причин его возникновения и развития;

4. производственно-практическая - возможность применения полученных знаний в производстве, для регуляции общественной жизни, в социальном управлении;

5. прогностическая - предсказание новых открытий в рамках существующих теорий, а также рекомендации на будущее;

6. мировоззренческая - внесение полученных знаний в существующую картину мира, рационализация отношений человека к действительности.

Определение науки

Для многих практических и теоретических целей, связанных с управлением научной деятельностью и научно-техническим прогрессом, представляется недостаточным знание одной лишь интуитивной идеи науки. Безусловно, определение вторично по сравнению с понятием. Наука, как бы ее ни определять, включает в себя прогресс генерации понятий, а определяя ее понятие, мы становимся причастны к этому процессу.

Многое из того, что касается взаимоотношения науки и общества, связано с местом науки в ряду других видов деятельности человека. В настоящее время существует тенденция придавать науке чрезмерно большое значение в развитии общества. Для установления истины в этом вопросе необходимо, прежде всего, выяснить, какой род деятельности следует называть наукой.

В общем смысле наукой называют деятельность, связанную с накоплением знаний о природе и обществе, а также саму совокупность знаний, позволяющие предсказать поведение объектов природы путем моделирования как их самых, так и их взаимодействия друг с другом (в частности, математического). Принято считать, что наука в современном смысле этого слова появилась в Древней Греции, хотя известно, что огромные запасы знаний были накоплены задолго до этого в Древних, Египте и Китае. С точки зрения практики знание примеров вполне эквивалентно знанию теорем, записанных в отвлеченных обозначениях. Поэтому условно примем равнозначность (в практическом смысле) этих систем знаний. Другими словами, для удобства сравнения мы приравняли полезность вавилонской и греческой геометрии. По-видимому, если при этом между ними все же существует различие, то именно в нем следует искать основание для определения науки. Оказывается, что в общем случае в геометрии Евклида не обязательно помнить сами теоремы, а уж тем более решения практических задач: достаточно знать определения, аксиомы, правила построения и иметь практические навыки, чтобы в случае возникновения потребности вывести ту или иную теорему и решить нужную задачу, опираясь на эту систему знаний. Пользуясь найденной теоремой (или теоремами) нетрудно решить множество задач. В противоположность этому вавилонская "наука" предусматривает запоминание совокупности примеров, потребных на все случаи жизни. Вавилонский способ накопления знаний всегда связан с большим расходом ресурсов памяти и, тем не менее, не дает возможности быстро получать ответы на вновь возникающие вопросы. Греческий способ связан с систематизацией знаний и, благодаря этому, максимально экономен. Подобные примеры, а число их можно умножить - вспомним, например, деятельность Линнея и Дарвина по систематизации знаний в биологии и связанный с этим прогресс в этой области - дают возможность определить науку, как деятельность по систематизации, упорядочиванию знаний. Со времен Ф. Бекона осознана мысль, что науке следует не только пассивно наблюдать и собирать готовое, но и активно искать и взращивать знания. Для этого по Бекону человек должен задавать природе вопросы и посредством эксперимента выяснять ее ответы. Другой стороной деятельности ученых традиционно является передача знаний другим людям, т.е. преподавательская деятельность. Итак, наукой является кодирование знаний, построение моделей различных объектов и систем, расчет (предсказание) на этой основе поведения конкретных объектов и систем.

Подходы в определении науки

Терминологический подход в определении науки

Обобщающим и важным для всех возможных определений науки остается то, что мы уже каким-то образом знаем, что такое наука. Речь идет об экспликации преднаходимого нами у себя знания, притом знания достаточно объективного или по крайней мере разделяемого нами со значительной частью научного сообщества. К науке относятся не только познание в смысле действия или деятельности, но и позитивные результаты этой деятельности. Кроме того, и некоторые результаты, которые в прямом и буквальном смысле трудно назвать позитивными, например, научные ошибки, использование науки в антигуманных целях, фальсификации, подчас весьма изощренные по многим критериям все же входят в сферу науки.

Необходимо терминологически дифференцировать науку от нескольких смежных и иногда смешиваемых с нею понятий. Прежде всего, закрепим категорию инновационной деятельности, т.е. такой деятельности, целью которой служит введение тех или иных новшеств (инноваций) в сложившиеся культурные комплексы. Благодаря своему инновационному аспекту наука отлична от других видов деятельности, связанных со знанием и информацией. Вместе с тем наука не тождественна научно-исследовательской деятельности: последнюю можно определить как инновационную деятельность в области знания, а это не включает многих аспектов науки — организационных, кадровых и т.д., к тому же "деятельность" есть именно деятельность, а не тот или иной ее конкретный результат, тогда как наука включает получаемые и полученные результаты в той же, если не в большей мере, нежели деятельность по их получению.

Методы доказательства и убеждения в самых различных сферах человеческой деятельности, таких как наука, политическое устройство, ораторское искусство, философия, заменили более ранний "метод" произвольного или чисто традиционного решения соответствующих проблем на основе скрытого постулата о единообразии человеческих действий, отражающем еще большее единообразие природного и сверхприродного порядка.

С тех пор и поныне термины "систематичность" и "исследование причин" остаются ключевыми для всякого определения науки. Первый из них можно считать более универсальным, поскольку полное отсутствие систематичности снимает самый вопрос о наличии науки (и даже познаваемости, если понимать последнюю, как это часто делается сейчас, в смысле, хотя бы аналогичном науке).

  1. Феноменологический аспект определения науки

Определяя науку, мы находимся внутри нее, как внутри чего-то нам известного, хотя еще и не эксплицированного. Субъект, видящий науку не как нечто внешнее, а «внутри» себя, находится в ситуации, отличной и от ситуации терминологического или умозрительного конструирования науки и от ситуации чисто эмпирического созерцания своего объекта (науки). В рамках науки как системы более высокого (по сравнению с любыми входящими в ее состав дисциплинами) ранга совокупность дисциплин, с той или другой стороны изучающих саму науку, образует определенную подсистему. Благодаря внедрению в нее принципов исследования операций, системного подхода и феноменологии удалось в основном преодолеть редукционистскую догму относительно того, что «все знание, в конечном счете, сводится к совокупности элементарных утверждений». В частности, науке отнюдь не чужда ценностная (моральная, культурно значимая) сторона. Эта тенденция к самоприращению ценности должна быть учтена в определении науки, представляющей собой, как было сказано, преимущественную область инноваций. Феноменологически наука вырастает из сравнительно элементарных ценностно-окрашенных проявлений, таких как любопытство, потребность быть осведомленным, практическая ориентация в мире.

  1. Ценностные аспекты определения науки

Поскольку наука в целом и во всех своих системных состояниях представляет собой один из продуктов развития ценностного сознания человечества, определения науки не должны игнорировать, как это иногда делается, ее ценностного аспекта, или ограничивать его одной лишь ценностью знания. Вместе с тем, если для этапа древневосточной, отчасти также и средневековой науки для отражения ценностного плана необходимо и, быть может, достаточно включить в определение науки ориентацию на постижение такой космической ценности, как универсальный Закон в его иерархической интерпретации, то для этапов античной, ренессансной, а также современной (классической и постклассической) науки спектр релевантных ценностей значительно шире и включает принципы объективного и беспристрастного исследования, гуманистическую ориентацию и императив получения и обобщения нового знания о свойствах, причинно-следственных связях и закономерностях природных, социальных и логико-математических объектов.

Основные принципы развития науки

Первым из них является, по-видимому, принцип, определяющий отношение человека к природе, во многом диктующий способы и возможности ее изучения. К IV веку до н. э. оформились две основные формулировки первого принципа: материалистическая и идеалистическая.

Материализм постулирует независимое от человека существование природы в виде различных движущихся форм материи, а человека рассматривает как продукт закономерного развития природы. Формулируют этот принцип обычно следующим образом: природа - первична, а сознание вторично.

Идеализм считает, что природа существует в виде идей, накапливаемых мозгом, о тех формах материи, которые человек ощущает. В зависимости от того, признается ли существование идей независимым, или они считаются порождением души (ума), различают объективный и субъективный идеализм. Одной из форм объективного идеализма является религиозная идеология, в которой постулируется существование первичного носителя идей - божества.

Таким образом, первый принцип в идеалистической формулировке имеет множество вариантов, тогда как материалистическая формулировка, по существу, единственна (может быть, поэтому идеалисты считают материализм примитивной идеологией.).

С высоты накопленных человечеством знаний современные материалисты рассматривают идеализм, как заблуждение. Не отрицая этого, мы бы хотели подчеркнуть следующую важную для нашей темы мысль: выбор между материализмом и идеализмом нельзя обосновать логическим путем. Можно только многочисленными опытными проверками показать, что материализм, как основа для познания природы, дает более полноценную и полезную систему знаний, чем идеализм. Такая ситуация не является исключительной в сфере идей: все первые принципы физики не могут быть доказаны, а являются практическими заключениями.

Другой поддержкой идеализму служит форма, в которую воплощены наши знания. Последние существуют в виде идей и символов, которые совершенно ничего общего не имеют с природными объектами, и, тем не менее, позволяют нам правильно общаться с природой. Велико искушение придать этим символам некоторое самостоятельное значение, что так характерно для абстрактной математики и теоретической физики нашего времени.

Итак, выбор той или другой формулировки первого принципа не может быть предопределен; другими словами, следует признать за учеными свободу совести в этом смысле. Только опыт может убедить в правильности той или иной формулировки.

Предметом учебного курса "Концепции современного естествознания" являются:

основные проблемы, идеи, теории естественных наук;

научные принципы познания, методы, модели.

Основные цели естествознания:

находить сущность явлений природы, их законы и на этой основе предвидеть или создавать новые явления;

раскрывать возможность использования на практике познанных законов природы.

Современная наука охватывает огромную область знаний - около 15 тысяч дисциплин, которые в различной степени отдалены друг от друга. В ХХ веке научная информация за каждые 10‑15 лет удваивалась. Если в 1900 году существовало около 10 тысяч научных журналов, то в настоящее время - несколько сотен тысяч. Более 90 % ученых, когда-либо живших на Земле, - наши современники, их число в мире к концу ХХ века составило свыше пяти миллионов человек.

Научные знания многообразны в своих проявлениях, но едины в контексте человеческой культуры. В настоящее время насчитывается до 500 определений термина "культура". Латинское слово cultura первоначально означало обработку земли, возделывание почвы. Цицерон в 45 году до н. э. применил его в переносном смысле как cultura animi, что переводится как "возделывание, взращивание души, духа". Культуру стали понимать как нечто противостоящее природе, созданное самим человеком.

В ХХ веке крупнейший российский социолог П.А. Сорокин характеризовал культуру как систему ценностей, с помощью которых общество интегрируется, поддерживает функционирование и взаимосвязь своих институтов.

Культура - это система средств человеческой деятельности, благодаря которой программируется, реализуется, стимулируется активность индивида, групп, человечества в их взаимодействии с природой и между собой. Эти средства создаются людьми, постоянно совершенствуются и состоят из трех содержательных типов культур - материальной, социальной и духовной.

Материальная культура - совокупность вещественно-энергетических средств бытия человека и общества. Она включает орудия труда, активную и пассивную технику, физическую ("телесную") культуру индивида и населения, благосостояние человека и общества и т.д.

Социальная культура - система правил поведения людей в различных видах общения и специализированных сферах общественной деятельности. Она включает этикет, профессиональную, правовую, религиозную, нравственную, экономическую и другие разновидности нормативной деятельности.

Духовная культура - система знаний, состояний, эмоционально-волевой сферы психики и мышления индивидов, а также непосредственных форм их выражений - знаков. Универсальный знак - язык - естественный и искусственный, звуковой (речь) и письменный. Основные виды духовной культуры - мораль, право, мировоззрение, идеология, искусство, наука и т. д.

Предметная область науки включает:

систему знаний о природе - естествознание (естественные науки);

систему знаний о позитивно значимых ценностях бытия человека, социальных слоев, государства, человечества (гуманитарные науки).

Естественные науки являются составной частью естественнонаучной культуры, а гуманитарные соответственно гуманитарной культуры.

Естественнонаучная культура - это:

совокупный исторический объем знания о природе и обществе;

объем знания о конкретных видах и сферах бытия, который в сокращенно-концентрированной форме актуализирован и доступен изложению;

усвоенное человеком содержание накопленного и актуализированного знания о природе и обществе.

Гуманитарная культура - это:

совокупный исторический объем знания философии, религиоведения, юриспруденции, этики, искусствознания, педагогики, литературоведения и других наук;

системообразующие ценности гуманитарного знания (гуманизм, идеалы красоты, совершенства, свободы, добра и т. п.).

Специфика естественнонаучной культуры: знания о природе отличаются высокой степенью объективности и достоверности (истинности). Кроме того, это глубоко специализированное знание.

Специфика гуманитарной культуры: системообразующие ценности гуманитарного знания определяются и активизируются исходя из принадлежности индивида к определенной социальной группе. Проблема истинности решается с учетом знания об объекте и оценки полезности этого знания познающим или потребляющим субъектом. При этом не исключается возможность толкований, противоречащих реальным свойствам объектов, насыщенность теми или иными идеалами и проектами будущего.

Путь к единой культуре. Почти на всем протяжении ХХ века наблюдалось противостояние двух сфер познания - естественнонаучной и гуманитарной. Английский ученый Ч. Сноу (1905-1980) сформулировал в середине ХХ века тезис об опасности этого противостояния, поскольку развитие естественных и гуманитарных наук не выходит на желаемый уровень интегративности. Ученый показал, что между традиционной гуманитарной культурой европейского Запада и "научной культурой", выросшей на основе развития естествознания и техники, возникает и углубляется существенный разрыв, если не сказать, пропасть.

Ч. Сноу размышлял о двух полюсах культуры. На одном из них - культура, созданная наукой, естествознанием. Прежде всего - это современная научная модель физического мира, которая по сложности, емкости, интеллектуальной глубине является удивительным творением коллективных усилий человеческого разума. Но представители другого полюса - гуманитарной культуры - не имеют, как правило, ни малейшего представления об этом творении. В гуманитарном сообществе не приемлют упрощений, идеализаций, забывая, что построение идеальных моделей - одно из условий плодотворного теоретического мышления. В свою очередь, многие гуманитарные ценности остаются неизвестными для большинства естествоиспытателей.

Однако к концу ХХ столетия появились серьезные предпосылки для преодоления подобного противостояния. Само по себе сопоставление различных научных дисциплин - это всегда обмен опытом и перенос его из одной области познания в другую. Это одна из возможных точек роста научного знания. Именно поэтому методологическое сопоставление гуманитарных и естественных наук часто приносит новое, дает замечательные научные результаты.

Междисциплинарный подход становится все более значимым для нынешнего развития науки. Идет процесс формирования единой науки о человеке, обществе, государстве, природе и жизни. При этом и социальное, и естественнонаучное понимание имеет единые исходные цели (достичь истинного знания).

Взаимосвязь естественнонаучной и гуманитарной культур заключается в следующем:

имеют общую культурную основу;

являются основополагающими элементами единой системы знаний;

представляют собой высшую форму человеческих знаний;

взаимно координируют в историко-культурном процессе;

стимулируют появление новых междисциплинарных отраслей знания на стыках естественных и гуманитарных наук.

Человек является основным звеном связи всех наук. Это обосновано тем, что человек:

непосредственно осуществляет процесс познания, задает его цели, определяет программу, контролирует протекание собственной познавательной активности;

использует результаты наук для удовлетворения своих общественных и личных потребностей;

постоянно совершенствует научную деятельность;

определяет смысл науки, идеалы, прогнозирует их развитие.

Среди выделяющихся в последние десятилетия новых отраслей знания значительное число уже по своей природе носит синтетический, интегративный характер (астрофизика, математическая лингвистика, инженерная психология, космическая медицина, техническая эстетика и др.). Интереснейшим примером такого синтеза становится в последние годы синергетика. Возникнув как физическая теория (в термодинамике), она может успешно служить для моделирования многих процессов социальной жизни - демографических, геополитических, социально-экономических и др.

Научная теория - это система знаний, описывающая и объясняющая определенную совокупность явлений, дающая обоснование всех выдвинутых положений и сводящая открытые в данной области законы к единому основанию. Например, теория относительности, квантовая теория, теория государства и права и т.д.

Обозначим основные черты научной теории:

1. Научная теория - это знание об определенном предмете или строго определенной, органически связанной группе явлений. Объединение знания в теорию определяется ее предметом.

2. Теорию в качестве важнейшего ее признака характеризует объяснение известной совокупности фактов, а не простое их описание, вскрытие закономерностей их функционирования и развития.

3. Теория должна обладать прогностической силой, предсказывать течение процессов.

4. В развитой теории все ее главные положения должны быть объединены общим началом, основанием.

5. Наконец, все входящие в содержание теории положения должны быть обоснованы.

Что же касается структуры научной теории, то она включает, во-первых, основания теории (аксиомы геометрии Евклида, принципы диалектики); во-вторых, законы, выступающие в качестве косяка научной теории, ее базы; в-третьих, узловые понятия, категориальный аппарат теории, с помощью которого выражается и излагается основное содержание теории; наконец, в-четвертых, идеи, в которых органически слиты отражение объективной реальности и постановка практических задач перед людьми.

Также есть вспомогательные основания теории то, что служит для построения, обоснования теории, решения ее прикладных и теоретических проблем. Среди них выделяются несколько групп.

1. Семиотические основания - правила построения языка теории и теории в этом языке. Часть научных теории использует естественный язык (то есть язык, на котором мы говорим), вводя некоторые ограничения (например, запрещение многозначности терминов). Но многие теории требуют формализованных языков (например, многочисленные языки компьютерного программирования), построенных по специальным правилам, удобным для данной теории.

2. Методологические основания - методы которыми пользуется данная наука. Они могут привлекаться из других теории наук, философии.

3. Логические основания - те правила и законы логики, по которым из исходных терминов и предложении теории получаются производные при сохранении определенного изначального семиотического значения предложении. Это средства логической систематизации теории, приведения ее терминов и предложении в логическую систему. Современные теории используют не только общеизвестную классическую (аристотелевскую) логику, но и многочисленные неклассические логики, многие из которых создаются специально, с учетом запросов конкретной теории

4. Прототеоретические основания - те теории, которые используются в качестве основании данной теории. Например, для физики это математика для философии естествознания все частные естественные науки и т. д.

5. Философские основания - категории и принципы философии, используемые для построения, обоснования теории и решения ее проблем. Примерами философских проблем научных теорий являются: отношение теории к действительности, методы и критерии оценки истинности теории, введение и исключение абстракций, анализ содержания и формы теории.

Высокая роль и растущее значение науки в жизни современного общества, с одной стороны, а с другой - опасные негативные социальные следствия бездумности, а порой и откровенно преступного использования достижений науки повышают в наши дни требования к нравственным качествам ученых, к этической, если ставить вопрос шире, стороне научной деятельности. Наметим хотя бы пунктирно некоторые из этих этических требований.

Прежде всего ученый должен соблюдать общечеловеческие нормы нравственности, и спрос с него в этом отношении должен быть выше, чем в среднем, и в силу важности его функций, и в силу высокой ответственности за социальные результаты его деятельности.

Второе требование - требование бескорыстного поиска истины без каких бы то ни было уступок коньюнктуре, внешнему давлению и т.д.

Третье - нацеленность на поиск нового знания и его до конца честного, досконального обоснования, не допуская подлога, погони за дешевой сенсацией, а тем более плагиата.

Четвертый устой этики науки - обеспечение свободы научного поиска.

Наконец, последний, пятый по счету, но первостепенный по значимости устой этики науки и этики ученого - высокая социальная ответственность и за результаты своих исследований, и в еще большей степени за их практическое использование. О необходимости повышения ответственности ученых и работников инженерной мысли за свои решения свидетельствует тяжелый груз Чернобыля.

Глобальные проблемы современности, - экологическая в особенности, да и не только она, - говорят о том, что от людей науки, да и от всех людей вообще требуется ныне по-новому, с повышенной требовательностью подходить к оценке и нашей познавательной, и нашей практической деятельности.

Структура научной теории.

Основной формой научного знания являются научные теории. Теория выступает как наиболее сложная и развитая форма научного знания. Генетически ей предшествуют другие формы, такие, как программы, типологии, классификации, составляющие базу для ее формирования. Поэтому теории возникают на базе таких программ или парадигм. Эти программы в свою очередь, функционируют как в рамках всего культурно-исторического целого, так и в разных типах культур.

Поскольку культура общества не является однородной в рамках одного культурно-исторического целого может быть сформулировано несколько научных программ. В свою очередь, одна научная программа порождает, как правило, несколько научных теорий.

Приступая к описанию структуры научной теории, необходимо отметить, что его можно давать как с содержательной так и с формальной стороны.

С содержательной стороны теория состоит из эмпирического базиса, тo есть совокупности зафиксированных в данной области знания фактов установленных в ходе экспериментов и требующих своего теоретического обобщения, логического аппарата теории, то есть множества допустимых в рамках теории правил логического вывода и доказательства, с помощью которых делаются выводы из эмпирических фактов, собственно теории, то есть совокупности выведенных в теории утверждений с их доказательствами.

Однако более интересен анализ теории с формальной точки зрения. В этом случае теория предстает перед нами в виде множества допущений, постулатов, аксиом, общих законов, в совокупности описывающих объект теории. Они часто определяются через термины других теории, обычного естественного языка, либо вводятся в теорию в виде аксиом, предложений не требующих доказательств. Можно выделить собственные основания теории это исходные термины и предложения теории, которые логически (с помощью правил и законов логики) обусловливают остальные ее термины и предложения. Собственные основания принадлежат самой теории, находятся внутри нее.

Также есть вспомогательные основания теории то, что служит для построения, обоснования теории, решения ее прикладных и теоретических проблем. Среди них выделяются несколько групп.

1. Семиотические основания - правила построения языка теории и теории в этом языке. Часть научных теории использует естественный язык (то есть язык, на котором мы говорим), вводя некоторые ограничения (например, запрещение многозначности терминов). Но многие теории требуют формализованных языков (например, многочисленные языки компьютерного программирования), построенных по специальным правилам, удобным для данной теории.

2. Методологические основания - методы которыми пользуется данная наука. Они могут привлекаться из других теории наук, философии.

3. Логические основания - те правила и законы логики, по которым из исходных терминов и предложении теории получаются производные при сохранении определенного изначального семиотического значения предложении. Это средства логической систематизации теории, приведения ее терминов и предложении в логическую систему. Современные теории используют не только общеизвестную классическую (аристотелевскую) логику, но и многочисленные неклассические логики, многие из которых создаются специально, с учетом запросов конкретной теории

4. Прототеоретические основания - те теории, которые используются в качестве основании данной теории. Например, для физики это математика для философии естествознания все частные естественные науки и т. д.

5. Философские основания - категории и принципы философии, используемые для построения, обоснования теории и решения ее проблем. Примерами философских проблем научных теорий являются: отношение теории к действительности, методы и критерии оценки истинности теории, введение и исключение абстракций, анализ содержания и формы теории.

В качестве философских оснований науки использовались различные философские концепции. Философские основания должны быть адекватны данной науке, то есть должны способствовать обновлению, развитию, практическому применению и решению основных проблем данной науки. Например, известно, что становлению геометрии Лобачевского, то есть становлению новых для своего времени собственных оснований геометрии (новой системы аксиом, допускающей пересечение параллельных прямых), существенно препятствовали метафизические философские основания математики, господствовавшие в науке того времени. Ведь никаких аргументов логического или методологического характера против геометрии Лобачевского не было. Ее противники выдвигали аргументы чисто гносеологического характера, их не устраивал способ решения Лобачевским проблем истинности.

Исследуя вопрос о сущности и происхождении научных теорий, необходимо обратить внимание на их классификацию. Ученые-науковеды обычно выделяют три типа научных теорий.

К первому типу теорий относятся описательные (эмпирические) теории - эволюционная теория Ч. Дарвина, физиологическая теория И. Павлова, различные современные психологические теории, традиционные лингвистические теории и т.п. На основании многочисленных опытных (эмпирических) данных эти теории описывают определенную группу объектов и явлений. На основе этих эмпирических данных формулируются общие законы, которые становятся базой теории.

Теории этого типа формулируются в обычных естественных языках с привлечением лишь специальной терминологии соответствующей области знания. Описательные теории носят по преимуществу качественный характер.

Второй тип научных теорий составляют математизированные научные теории, использующие аппарат и модели математики. В математической модели конструируется особый идеальный объект, замещающий и представляющий некоторый реальный объект. К этому типу теорий относятся логические теории, теории из области теоретической физики. Обычно эти теории основаны на аксиоматическом методе - наличии ряда базовых аксиом (принципов, принимаемых без доказательств), из которых выводятся все остальные положения теории. Часто к исходным аксиомам, которые отвечают признакам очевидности, непротиворечивости, добавляется какая-то гипотеза, возведенная в ранг аксиомы. Такая теория должна быть обязательно проверена на практике.

Третий тип - дедуктивные теоретические системы. Первой дедуктивной теорией явились «Начала» Евклида, построенные с помощью аксиоматического метода. Исходная теоретическая основа таких теорий формулируется в их начале, а затем в теорию включаются лишь те утверждения, которые могут быть получены логически из этой основы. Все логические средства, используемые в этих теориях, строго фиксируются, и доказательства теории строятся в соответствии с этими средствами. Дедуктивные теории строятся обычно в особых формальных языках. Такие теории вместе с тем остро ставят проблему интерпретации, которая является условием превращения формального языка в знание в собственном смысле слова.

Содержание и особенности каждого типа научной теории убеждают в том, что возникновение научных теорий неразрывно связано с процессами идеализации и абстрагирования, которые, в свою очередь, порождают научные термины - понятия.

Понятие - это отражение предметов и явлений со стороны их существенных свойств и отношений, форма мышления, которая обобщает и выделяет предметы по их общим признакам. Это означает, что предмет или явление исследуются только со стороны тех свойств и отношений, которые интересуют нас в этой теории, и отвлекаемся от всех прочих, неважных для данной теории. Таким образом происходит процесс огрубления действительности. Именно так получаются научные понятия и термины.

Их можно разделить на две группы: эмпирические и теоретические понятия. Абсолютной границы между ними нет. Обычно к эмпирическим понятиям относятся те, что связаны с явлениями и предметами реальной действительности, с данными чувственного опыта. В качестве существенных черт этими понятиями выделяются те, которые могут быть обнаружены при помощи органов чувств. Теоретические понятия также относятся к предметам и явлениям объективного мира, но в качестве существенных черт выступают ненаблюдаемые свойства, часто гипотетические. Например, понятие «температура» мы можем определить эмпирически и теоретически. На эмпирическом уровне это делается посредством термометра. Но можно ввести это понятие и теоретически — как величину, пропорциональную средней кинетической энергии молекул тела.

Научные понятия формируются как результат двух процедур: абстрагирования и идеализации. Абстрагирование представляет собой мысленное отвлечение от всех свойств, связей и отношений изучаемого объекта, которые представляются несущественными для данной теории. В результате мы получаем абстрактный объект, который хотя и имеет аналог в действительности, но является по сравнению с ним очень обедненным. Результат процесса абстрагирования называется абстракцией. Именно так получаются такие абстракции, как точка, прямая, множество и т.д.

Идеализация представляет собой операцию мысленного выделения какого-то одного, важного для данной теории свойства или отношения. В результате возникает некий объект, обладающий только этим свойством или отношением. Необходимость идеализации обусловлена стремлением исключить из рассмотрения различного рода побочные факторы, представить исследуемые процессы в чистом виде. Так возникают понятия «абсолютно черное тело», «абсолютно несжимаемая жидкость», «сплошная среда», «идеальный газ» и т.п. Вполне очевидно, что в действительности таких объектов не существует. Следует помнить, что для создания идеального объекта совсем не обязательно использовать какие-то реальные свойства и отношения, они могут быть и гипотетическими. Именно так было введено понятие атома как бесконечно малой бесструктурной единицы вещества.

Задача науки - выявление общих законов, которые выражают повторяющиеся в различных предметах и явлениях существенные свойства и отношения. Но, чтобы выделить существенные свойства и отношения, нужно уметь отвлекаться от несущественных, то есть создавать научные абстракции. Без их введения невозможна научная деятельность. Когда же мы начинаем применять созданную теорию на практике, мы должны вернуться вновь к предметам и явлениям действительности во всей совокупности их свойств и отношений. А это есть проблема исключения научных абстракций. Поэтому важно правильно вводить и исключать научные абстракции.

МЕТОДЫ НАУЧНОГО ПОЗНАНИЯ

Каждая наука использует различные методы, которые зависят от характера решаемых в ней задач. Однако своеобразие научных методов состоит в том, что они относительно независимы от типа проблем, но зато зависимы от уровня и глубины научного исследования, что проявляется прежде всего в их роли в научно-исследовательских процессах. Иными словами, в каждом научно-исследовательском процессе меняется сочета­ние методов и их структура. Благодаря этому возникают особые формы (стороны) научного познания, важнейшими из которых являются эмпирическая, теоретическая и производст­венно-техническая.

Эмпирическая сторона предполагает необходимость сбора фактов и информации (установление фактов, их регистрацию, накопление), а также их описание (изложение фактов и их первичная систематизация).

Теоретическая сторона связана с объяснением, обобщением, созданием новых теорий, выдвижением гипотез, открытием новых законов, предсказанием новых фактов в рамках этих теорий. С их помощью вырабатывается научная картина мира и тем самым осуществляется мировоззренческая функция науки.

Производственно-техническая сторона проявляет себя как непосредственная производственная сила общества, прокладывая путь развитию техники, но это уже выходит за рамки собственно научных методов, так как носит прикладной характер.

Средства и методы познания соответствуют рассмотренной выше структуре науки, элементы которой одновременно являются и ступенями развития научного знания. Так, эмпирическое, экспериментальное исследование предполагает целую систему экспериментальной и наблюдательной техники (устройств, в том числе вычислительных приборов, измерительных установок и инструментов), с помощью которой устанавливаются новые факты. Теоретическое исследование предполагает работу ученых, направленную на объяснение фактов (предположительное - с помощью гипотез, проверенное и доказанное - с помощью теорий и законов науки), на образование понятий, обобщающих опытные данные. То и другое вместе осуществляет проверку познанного на практике.

В основе методов естествознания лежит единство его эмпирической и теоретической сторон. Они взаимосвязаны и обусловливают друг друга. Их разрыв, или преимущественное развитие одной за счет другой, закрывает путь к правильному познанию природы - теория становится беспредметной, опыт слепым.

1. Теория как высшая форма организации научного знания

Научное знание включает в себя два основных взаимосвязанных, но качественно различных уровня – эмпирический и теоретический. Каждый из них выполняет определенные функции и располагает специфическими методами исследования.

Фундаментом науки являются твердо установленные факты, полученные эмпирическим, т.е. опытным, путем, например совокупность эмпирических данных, полученных в результате астрономических наблюдений за перемещением небесных тел.

Закономерности, полученные на эмпирическом уровне, обычно мало что объясняют. Более того, чаще всего они не открывают направлений дальнейшего научного поиска. Поэтому над эмпирическим уровнем науки надстраивается теоретический уровень. Без определенной теоретической установки не может начаться эмпирическое исследование. Теоретический уровень обеспечивает целостное восприятие действительности, в рамках которого многообразные факты укладываются в некоторую единую систему. Сущностью теоретического познания является не только описание и объяснение многообразных фактов и закономерностей, выявленных в процессе эмпирических исследований в определенной предметной области, на основе немногих законов и принципов; она выражается также в стремлении ученых раскрыть гармонию мироздания.

К числу основных компонентов теоретического уровня знания относятся проблема, гипотеза и теория. Наиболее развитой формой научного знания является теория – знание, дающее целостное отображение закономерных и существенных связей в определенной области действительности. Теория строится для целей объяснения объективной реальности. Главная задача теории заключается в том, чтобы описать, систематизировать и объяснить все множество данных эмпирического уровня. При этом следует иметь в виду, что теория описывает непосредственно не окружающую действительность, а идеальные объекты, которые в отличие от реальных характеризуются не бесконечным, а вполне определенным количеством свойств. Так механика описывает не реальные процессы, с которыми человек имеет дело в действительности, а процессы, относящиеся к идеальным объектам, например материальным точкам, которые описываются очень небольшим количеством свойств, а именно массой и возможностью находится в пространстве и во времени.

Помимо идеальных объектов в теории задаются взаимоотношения между ними, которые описываются законами. Корме того, из первичных идеальных объектов можно конструировать производные объекты. В итоге теория способна описать все то многообразие данных, которые получены на эмпирическом уровне. Для этого на основе исходных идеальных объектов строится теоретическая модель конкретного явления и предполагается, что эта модель в существенных своих сторонах, в определенных отношениях соответствует тому, что есть в действительности.

Теоретический уровень обычно расчленяется на две составляющие – фундаментальные теории и теории, описывающие конкретную область реальности, базируясь на этих фундаментальных теориях.

Роль теории в науке, в частности в естествознании, определяется тем, что здесь объект умственно контролируется, поэтому, вообще говоря, теоретический объект можно описать как угодно детально и получить в принципе как угодно далекие следствия из теоретических представлений. Сила теории состоит в том, что она может развиваться без прямого контакта с действительностью, но при условии, что исходные принципы соотносятся с действительностью.

Научная теория – это развивающаяся система знания (включающая и элементы заблуждения), которая имеет сложную структуру:

  • исходные основания (первичные фундаментальные понятия, законы,

  • постулаты, аксиомы и т.п.);

  • идеализированный объект данной теории – абстрактная модель существенных свойств и связей изучаемых предметов;

  • логика теории, нацеленная на прояснение структуры и развитие знания, содержащая определенные правила вывода и способы доказательства; совокупность законов и утверждений, выведенных из основных положений теории;

  • философско-методологические установки и ценностные факторы.

Любая теория выполняет большое количество функций. Основные из них: синтетическая - объединяет отдельные научные знания в единую систему; объяснительная – выявляет причинные и иные связи конкретного явления, его существенные характеристики, законы его происхождения и развития; методологическая – отвечает за разработку на базе теории разнообразных методов, способов и приемов исследовательской деятельности; предсказательная или функция предвидения – формулирует представления о неизвестных ранее фактах, объектах и их свойствах или о тех, о существовании которых известно, но они пока еще не выявлены; практическая – заключается в стремлении теории быть воплощенной в практику, стать инструментом изменения действительности.

Теории строятся различными способами:

  • аксиоматическое построение, когда научная теория строится в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путем логических выводов получать утверждения (теоремы) данной теории;

  • генетическое построение, когда предмет вводится постепенно и последовательно раскрывается от простейших до все более сложных аспектов.

Научная теория развивается под воздействием различных стимулов, которые могут быть внешними и внутренними. Внешние стимулы представляют собой обнаруженные в составе теории нерешенные задачи, противоречия и т.п. Как те, так и другие приводят к развитию теории в 3х основных формах:

1. Интенсификационная форма развития, когда происходит углубление наших знаний без изменения области применения теории.

2. Экстенсификационная форма развития, когда происходит расширение области применения теории без существенного изменения ее содержания. В таком случае осуществляется экстраполяция теории на вновь открываемые или уже известные явления. Примером этого может служить распространение теории электромагнетизма на область оптических явлений.

3. Экстенсификационно - интенсификационная (комбинированная) форма развития. Такой формой развития является, например, процесс дифференциации научных теорий.

В развитии теории могут быть выделены два относительно самостоятельных этапа: эволюционный, когда теория сохраняет свою качественную определенность, и революционный, когда осуществляется ломка ее основных исходных начал, компонентов, математического аппарата и методологии. По существу такой скачек в развитии теории есть создание новой теории. Совершается он тогда, когда возможности старой теории исчерпаны.

2. Принципы «верификации» и «фальсификации»

Критерием научного статуса теории является ее проверяемость и принципиальная опровергаемость.

Известно несколько критериев разграничения научных и псевдонаучных идей. В 1920-е гг. философами-неопозитивистами была предложена верификационная концепция научного знания. В качестве критерия отграничения научного знания от ненаучного неопозитивисты рассмотрели верификацию, т.е. опытную подтверждаемость. Научные высказывания осмысленны, поскольку могут быть проверены на соответствие опыту, неверифицируемые высказывания бессмысленны. Научные положения тем лучше обоснованы, чем больше подтверждающих эти положения фактов. С помощью процедуры верификации неопозитивисты предполагали очистить науку от всех неосмысленных высказываний, построить идеальную с точки зрения логики модель науки. Очевидно, что в неопозитивистской модели наука сводилась к эмпирическому знанию, высказываниям о фактах, подтверждаемым опытом.

Верификационная концепция научного знания сразу же после появления была подвергнута критике. Суть критических положений сводилась к утверждениям о том, что наука не может развиваться только на основе опыта, так как предполагает получение и таких результатов, которые несводимы к опыту и напрямую из него невыводимы. В науке существуют высказывания о фактах прошлого, формулировки общих законов, которые не могут быть проверены с помощью критерия верификации. Кроме того, сам принцип верифицируемости неверифицируем, т.е. его следует отнести к разряду бессмысленных, подлежащих исключению из системы научных высказываний.

К. Поппер в своей концепции критического рационализма предложил иной критерий отграничения научного знания от ненаучного – фальсификацию.

Теоретическая позиция критического рационализма складывалась в полемике с неопозитивизмом. Так, К. Поппер утверждал, что научное отношение – это прежде всего критическое отношение. Испытание гипотезы на научность должно заключаться не в поиске подтверждающих фактов, а в попытках опровержения. Фальсифицируемость, таким образом, приравнивается к эмпирической опровержимости. Из общих положений теории выводятся следствия, которые могут быть соотнесены с опытом. Затем эти следствия подвергаются проверке. Опровержение одного из следствий теории фальсифицирует всю систему. «Неверифицируемость, а Фальсифицируемость системы должна считаться критерием демаркации... От научной системы я требую, чтобы она имела такую логическую форму, которая делает возможным ее выделение в негативном смысле: для эмпирической научной системы должна существовать возможность быть опровергнутой опытом», - утверждал К. Поппер. По его мнению, науку следует понимать как систему гипотез, догадок и предвосхищений, которые используются до тех пор, пока выдерживают эмпирическую проверку.

Таким образом, К. Поппер предлагает анализировать науку на теоретическом уровне, как целостную систему, а не заниматься подтверждением отдельных высказываний. Любая теория, по его мнению, если она претендует на статус научной, должна в принципе опровергаться опытом. Если теория построена так, что она в принципе неопровержима, то ее нельзя считать научной.

3. Проблемы границ научного метода и научности

Человека всегда занимали «вечные вопросы»: о жизни и смерти, о добре и зле, о боге и вечности, о конечной цели бытия и нашем месте во вселенной. Религия не смогла ответить на эти вопросы, она лишь на время успокоила стремление их разрешить и дала краткое утешение в забвении человеческих сложностей и проблем земного бытия.

Наука тоже не приспособлена для ответов на вопросы о смысле жизни – у нее более скромные задачи. В ослеплении успехами точных наук об этом часто забывают и упускают из виду ту простую возможность, что будущим поколениям людей наш рационализм и вера в науку будут столь же смешны и непонятны, как для нас обряды египетских жрецов: безгранично лишь само познание, а не его исторические формы.

Наука в состоянии познать только те явления, свойства которых можно оценить числом. Работу гипнотизера нельзя описать математическими формулами, и тем не менее результаты ее несомненны и воспроизводимы. Достижения индийских йогов – экспериментальный факт, многократно проверенный. Однако эти феномены не могут стать объектами точной науки, поскольку они не поддаются количественному описанию с помощью чисел и формул. Точно так же явления телепатии не станут достоверными до тех пор, пока не подтвердятся научными опытами. Наше время признает только и только такие доказательства; точно так же, как в средние века принимали во внимание лишь доказательства со ссылками на авторитеты. Это означает просто, что мир богаче и сложнее, чем его образ, даваемый наукой. И те из ученых, кто пытается представить себе мир в виде бесконечных таблиц чисел и отрицает реальность многих явлений природы только на том основании, что они необъяснимы средствами науки, - эти ученые не очень отличаются от попов, которые при виде паровоза закрывали глаза, топали ногой и приговаривали: «Сгинь, сатана!» Для таких ученых гений и убийца неразличимы, ибо можно строго научно доказать, что они состоят из совершенно одинаковых молекул. Абсолютизация науки, как и любого другого метода, недопустима. Но нельзя также и неоправданно ограничивать научное (рациональное, материалистическое) мировоззрение, априорно исключая из рассмотрения те факты, которые на данном уровне научного знания представляются иррациональными. Прежде всего, все факты должны быть строго научно проверены.

На фоне такого рода рассуждений квантовая механика, о которой так много теперь известно, должна показаться совсем простой наукой. В самом деле, об атоме водорода мы знаем так много, что можем предсказать все его наблюдаемые свойства. Значительно труднее, но все-таки можно рассчитать свойства молекулы водорода. Но уже свойства молекул белка мы предсказать не в состоянии. Белков не так уж много, однако из них построен каждый человек во всей его неповторимости.

Все грандиозное здание науки, веками возводимое человечеством, основано на триедином утверждении:

  • мир подчиняется определенным законам (и число их конечно);

  • законы эти логичны (то есть могут быть познаны и использованы с помощью законов логики) и непротиворечивы;

  • мир един (есть некоторые законы, носящие общий характер для всего мира; те же законы, которые действуют локально, вытекают из общих и им не противоречат).

Только в том случае, когда свойства мира удовлетворяют этим условиям, возможно получение при помощи науки практических результатов. Только тогда имеет смысл порождение новых научных гипотез, их проверка на практике и использование их результатов. Таким образом, от выполнения этих условий зависит ответ на один из основных вопросов философии - познаваем ли мир. Но, если непредвзято оценить надежность приведенного основания науки, отмечаются его слабые места. Например, все это основание будет разрушено, если в окружающем мире достоверно обнаружатся какие-либо явления, не укладывающиеся в рамки закона (или, что то же самое, невозможно будет найти им рациональное обоснование). Наука в этом случае окажется бессильной. Хотя интуитивно понятна исчезающе малая вероятность такого случая.

Наиболее правдоподобным выглядит предположение о том, что сложность общих законов мира всегда превышает возможности наблюдателя. В роли непреодолимой сложности может выступать бесконечность (пространства, времени, структуры). Наконец, может иметь место как физическая недоступность для исследователя каких-либо частей мира, так и уникальность событий, делающих невозможным их анализ.

Сегодня наука является оптимальным способом познания мира. Необходимо, однако, подчеркнуть, что справедливость этого утверждения исходит из экспериментальных данных, поэтому оно верно с большой, но не стопроцентной вероятностью. Тем более, нет никаких гарантий, что ситуация не изменится завтра.

Итак, наука, научный метод, безусловно, полезны и необходимы, но, к сожалению, не всемогущи. Точные границы научного метода пока еще размыты, неопределенны. Но то, что они есть, - несомненно. Это не повод лишать науку доверия. Это всего лишь признание факта, что реальный мир гораздо богаче и сложнее, чем его образ, создаваемый наукой.

Т. Кун (родился в 1922 г.) – автор «Структура научных революций» и одноименной антикумулятивистской концепции. До него Поппер и Лакатос анализируя историю науки применяют методологический подход.

Т. Кун впервые предложил отказаться от образа науки, которая развивается 1) постепенно и 2) по законам логики. Он считал что научная деятельность - мероприятие, имеющее ярко выраженный аксиологический (природы ценностей), социологический (развитие социальных систем) и психологический характер.

Т. Кун рассуждает следующим образом. Наука делается прежде всего научным сообществом. А каждое научное сообщество имеет свои специфические черты. Научное сообщество – это люди, признающие одну общую парадигму. Парадигма - центральное понятие у Куна в концепции истории науки.

Он употребляет термин в 2 смыслах:

...вся совокупность убеждений, ценностей, технических средств и т.д., которая характерна для данного сообщества. (это одна, или несколько фундаментальных теорий, пользующихся всеобщим признанием у данного научного сообщества в течение какого-то времени (механика Ньютона, теория атома Бора)) Смысл социологический

он указывает один вид элемента в этой совокупности - конкретные решения головоломок, которые, когда используются в качестве моделей или примеров, могут заменять эксплицитные правила как основу для решения не разгаданных еще головоломок нормальной науки. (Это образец того, как можно решать научные проблемы. Наиболее важные результаты, достигнутые той или иной парадигмой, отражаются в учебниках.)

Действенность парадигм обнаруживается в процессе их применения. Научное мировоззрение складывается по-разному. Две группы ученых, работая в различных мирах видят вещи по-разному. Явления наследственности рассматривают различно дарвинисты и генетики. Ученый видит явления в соответствии с теми ценностями, которые он усвоил, общаясь с учителями и коллегами.

Мир фактов не настолько определен, чтобы допускать правомерность одного образца научного знания.

Согласно Куну, любая наука проходит в своем движении 3 фазы (можно представить как генезис науки):

допарадигмальную

парадигмальную

постпарадигмальную

Чередование эпизодов конкурентной борьбы между различными научными сообществами и этапов, предполагающих систематизацию теорий, уточнение понятий, совершенствование техники (этапов так называемой нормальной науки). Период господства принятой парадигмы сменялся периодом распада, что отражалось в термине «научная революция». Победа одной из противоборствующих сторон вновь восстанавливала стадию нормального развития науки. В период до возникновения новой парадигмы идет хаотичное накопление фактов. Выход из данного периода означал установление стандартов научной практики, теоретических постулатов, точной картины мира, соединение теории и метода.

Научная революция представляет собой процесс смены парадигмы. По Куну:

носит нелинейный характер;

процесс смены научных парадигм не может быть истолкован чисто рационально.

наука изменяется не куммулятивно (поступательно-непрерывно), а прерывно - посредством катастроф, ставших малопродуктивными, доктриальных построений интеллектуальной элиты.

Почему парадигмы не совместимы друг с другом? Потому что кардинальным образом меняется способ интерпретации. Подобное изменение не рядовой акт, переключается форма интерпретации в целом. Новая парадигма рождается благодаря проблескам интуиции. След. не носит чисто рациональный характер. Рациональных элементов для объяснения не хватает, значительную роль играет элемент веры научного сообщества в то, что мир устроен именно так, а не иначе (например, вера Менделеева в правильность периодической системы элементов, которую он составил в результате прозрения). Переход в новую парадигму – это обращение в новую научную веру (именно в момент научных революций) и носит иррациональный характер. Потом, когда научная парадигма установится, рациональность снова займет свое ведущее место в науке.

Научные революции редки, т.к. грандиозны. Это сложнейшее явление, детерменируемой многими обстоятельствами, в том числе психологическими.

Выделяют четыре типа научных революций по следующим основаниям:

появление новых фундаментальных теоретических концепций;

разработка новых методов;

открытие новых объектов исследования;

формирование новых методологических программ.

Предпосылкой любой научной революции являются факты или та фундаментальная научная аномалия, которая не может быть объяснена имеющимися научными средствами и указывает на противоречия существующей теории. Когда аномалии, проблемы и ошибки накапливаются и становятся очевидными, развивается кризисная ситуация, которая и приводит к научной революции. В результате научной революции возникает новая объединяющая теория (или парадигма в терминологии Куна), обладающая объясняющей силой и устраняющая ранее имеющиеся противоречия.

Так было в случае перехода от аристотелевско-птолемеевой геоцентрической астрономии к коперниковской гелиоцентрической астрономии, к ньютоновской классической механике и эволюционной биологии.

Основания науки обеспечивают рост знания до тех пор, пока общие черты системной организации изучаемых объектов учтены в картине мира, а методы освоения этих объектов соответствуют сложившимся идеалам и нормам исследования.

Но по мере развития науки она может столкнуться с принципиально новыми типами объектов, требующими иного видения реальности по сравнению с тем, которое предполагает сложившаяся картина мира. Новые объекты могут потребовать и изменения схемы метода познавательной деятельности, представленной системой идеалов и норм исследования.

В этой ситуации рост научного знания предполагает перестройку оснований науки. Последняя может осуществляться в двух разновидностях:

как революция, связанная с трансформацией специальной картины мира без существенных изменений идеалов и норм исследования;

как революция, в период которой вместе с картиной мира радикально меняются идеалы и нормы науки.

Примерами первого типа могут быть революция в медицине, вызванная открытием В. Гарвея кругообращения крови (1628); революция в математике в связи с открытием дифференциального исчисления И. Ньютона и Г. Лейбница; кислородная теория Лавуазье; переход от механической картины мира к электромеханической в связи с открытием теории электромагнитного поля. Они не меняли познавательных установок классической физики, идеалов и норм исследования (признание жестко детерминированных связей процессов и явлений, исключение помех, связанных с приборами и средствами наблюдения, и т.д.).

Пример научной революции второго типа — открытия термодинамики и последовавшая в середине XX в. квантово-механическая революция, которая вела не только к переосмыслению научной картины мира, но и к полному сдвигу научной парадигмы, меняющему также стандарты, идеалы и нормы исследования. Изменялись способы описания и обоснования знания, признавались вероятностная природа изучаемых систем, нелинейность и бифуркационность развития (Бифуркация - нарушение устойчивости эволюционного режима развития системы, приводящее к возникновению целого спектра альтернативных сценариев эволюции).

По Куну, смена научной парадигмы, переход в фазу «революционного разлома» предусматривает полное или частичное замещение элементов дисциплинарной матрицы, исследовательской техники, методов и теоретических допущений. Трансформировался весь набор гносеологических ценностей. Схема, предложенная Куном, включала следующие стадии: донаучная стадия — кризис — революция — новая нормальная наука, т.е. спокойное эволюционное развитие науки — новый кризис и т.д. Кун, детально исследуя переломные моменты в истории науки, показывает, что период развития «нормальной науки» также может быть представлен традиционными понятиями, например понятием прогресса, которое в данном случае имеет критерий количества решенных проблем. Для Куна «нормальная наука» предполагает расширение области применения парадигмы с повышением ее точности. Критерием пребывания в периоде «нормальная наука» является сохранение принятых концептуальных оснований. Можно сказать, что действует определенный иммунитет, позволяющий оставить концептуальный каркас той или иной парадигмы без изменения. Цель «нормальной науки», отмечает Т. Кун, ни в коей мере не предусматривает предсказания новых видов явлений. Иммунитет, или невосприимчивость к внешним, нестыкующимся с принятыми стандартами факторам, не может абсолютно противостоять так называемым аномальным явлениям и фактам — они постепенно подрывают устойчивость парадигмы. Кун характеризует «нормальную науку» как кумулятивное накопление знания.

Революционные периоды, или научные революции, приводят к изменению структуры науки, принципов познания, категорий, методов и форм организации. Чем же обусловлена смена периодов спокойного развития науки и периодов ее революционного развития? История развития науки позволяет утверждать, что периоды спокойного, нормального развития науки отражают ситуацию преемственности традиций, когда все научные дисциплины развиваются в соответствии с установленными закономерностями и принятой системой предписаний. «Нормальная наука» означает исследования, прочно опирающиеся на прошлые или имеющиеся научные достижения и признающие их в качестве фундамента последующего развития. В периоды нормального развития науки деятельность ученых строится на основе одинаковых парадигм, одних и тех же правил и стандартов научной практики. Возникает общность установок и видимая согласованность действий, которая обеспечивает преемственность традиций того или иного направления. Ученые не ставят задачи создания принципиально новых теорий, более того, они даже нетерпимы к созданию подобных «сумасшедших» теорий другими. По образному выражению Куна, ученые заняты «наведением порядка» в своих дисциплинарных областях. «Нормальная наука» развивается, накапливая информацию, уточняя известные факты. Одновременно период «нормальной науки» характеризуется «идеологией традиционализма, авторитаризма, позитивного здравого смысла и сциентизма (мировоззренческая установка, связанная с преувеличением социальных и практических возможностей науки, ее роли в жизни общества)».

Каждая научная революция открывает новые закономерности, которые не могут быть поняты в рамках прежних представлений. Мир микроорганизмов и вирусов, мир атомов и молекул, мир электромагнитных явлений и элементарных частиц, мир кристаллов и открытие других галактик — это принципиальные расширения границ человеческих знаний и представлений об универсуме.

Научная революция значительно меняет историческую перспективу ' исследований и влияет на структуру учебников и научных работ, затрагивает стиль мышления и может по своим последствиям выходить далеко за рамки своей области (так, открытие радиоактивности на рубеже XIX—XX вв. использовалось в философии и мировоззрении, медицине и генетике). Научные революции рассматриваются как некумулятивные эпизоды развития науки, во время которых старая парадигма замещается целиком или частично новой парадигмой, несовместимой со старой.

Симптомами научной революции кроме явных аномалий являются кризисные ситуации в объяснении и обосновании новых фактов, борьба старого знания и новой гипотезы, острейшие дискуссии. Научные сообщества, а также дисциплинарные и иерархические перегородки размыкаются. Научная революция — это не одномоментный акт, а длительный процесс, сопровождающийся радикальной перестройкой и переоценкой всех ранее имевшихся факторов. Изменяются не только стандарты и теории, но и средства исследования, открываются новые миры.

Например, появление микроскопа в биологии, а впоследствии телескопа и радиотелескопа в астрономии позволило сделать великие открытия. Весь XVII в. был назван эпохой «завоеваний микроскопа». Открытия кристалла, вируса и микроорганизмов, электромагнитных явлений и мира микрочастиц дают возможность, более глубинного измерения реальности.

Научная революция предстает как некая прерывность в том смысле, что она отмечает рубеж не только перехода от старого к новому, но и изменение самого направления. Открытия, сделанные учеными, обусловливают фундаментальные сдвиги в истории развития науки, знаменуют собой отказ от принятой и господствующей теории в пользу новой, несовместимой с прежней. И если работа ученого в период «нормальной науки» характеризуется как ординарная, то в период научной революции она носит экстраординарный характер.

Революционные периоды в развитии науки всегда воспринимались как особо значимые. Их «разрушительная» функция со временем трансформировалась в созидательную, творческую и инновационную. Научная революция была наиболее очевидным выражением основной движущей силы научного прогресса.

В период революций ученые открывают новое и получают новые результаты даже в тех случаях, когда используют обычные инструменты в областях, которые исследовали ранее. Однако существенным вкладом научной революции является именно появление новых методов, методик, приборов и средств познания. Современные ученые обращают внимание на меж- и внутридисциплинарные механизмы научных революций. Междисциплинарные взаимодействия многих наук предусматривают анализ сложных системных объектов, выявляя такие системные эффекты, которые не могут быть обнаружены в рамках одной дисциплины (в настоящее время ярким примером таких междисциплинарных исследований является синергетика - одна из фундаментальных теорий современной науки, изучающая поведение сложных нелинейных систем. Ее часто определяют как науку о самоорганизации в системах, далеких от равновесия).

В случае междисциплинарных трансформаций картина мира, выработанная в лидирующей науке, транслируется во все другие научные дисциплины, принятые в лидирующей науке идеалы и нормы научного исследования обретают общенаучный статус.

Так было в период революции в химии, когда в нее были перенесены идеалы количественного описания из физики, а впоследствии и представления о силовых взаимодействиях между частицами атома, атомном строении вещества. Примером обратного воздействия могут быть развитые в химии представления о молекуле как соединении атомов, которые затем вошли в общую картину мира, стали междисциплинарными, оказав решающее воздействие на физику в период разработки молекулярно-кинетической теории теплоты.

Научные революции

Научная революция – смена оснований науки. Роль научной революции в научном познании велика (Кун, Лакатос). По мнению Степина, смена оснований науки может осуществляться в 2 формах:

1) Революции, связанные с трансформацией специальной картины мира без существенных изменений идеалов и норм исследования (Максвелл – мини-революция в физике в XIX в. Электромагнетизм расширил рамки физического учения, но это не глобальная революция).

2) Революция, в период которой вместе с картиной мира меняются идеалы и нормы науки (становление квантовой механики) – меняются представления о взаимоотношении субъекта и объекта познания. VII – VIII вв. – субъект познания не взаимодействует с объектом познания.

В квантовой механике, чтобы изучить объект, необходимо воздействовать на него, в результате чего он меняет свойство. Квантовая механика носит вероятностный характер. Вероятность в классической механике берется из какой-то группы событий. К одному объекту вероятность неприменима в классической физике. В квантовой механике все наоборот – вероятность применима к одному объекту. Новая картина исследуемой реальности может оказывать революционное воздействие на другие науки.

Пути перестройки оснований научного знания:

1) За счет внутридисциплинарного научного знания (примеры строить на примере конкретного знания).

2) За счет междисциплинарных связей при переходе с одних парадигм и установок к другим (идея эволюции).

Общественные изменения наиболее заметны. Идея эволюции от общества переходит в биологию.

Середина XX в. – космология Большого взрыва. Физики VII в. принимали атомистическую концепцию. При этом в VII в. начинает формироваться химия – заимствование физической концепции атомарного строения, появление концепции молекулы (состоящей из атомов) – позаимствовано из химии.

Революции:

частнонаучные – смена специальной научной картины мира конкретных наук

общенаучные (глобальные) – смена общенаучной картины мира. Глобальные революции происходят гораздо реже. По Кохановскому, их было 3: **1) Аристотелевская (IV – III вв. до н.э.) – в результате этой революции рождается сама наука – революция в духовном мире;

2) Ньютоновская (XVII в.): осуществлена Коперником, Галилеем, Кеплером (XVI – XVII вв.), Ньютоном (механика, дифференциальное и интегральное исчисление, оптика);

3) Эйнштейновская (XIX – XX вв.): М. Квант, Н. Бор, А. Эйнштейн и др. – радикально поменялась научная общая картина мира. Возникла теория Большого взрыва.

По другому мнению, научных революций было 4 (Степин): в качестве четвертой научной революции рассматривается становление постнеклассической науки (синергетики).

Сфера научных революций связана со всеми другими сферами жизни общества (духовной, политической, экономической и др.).

1. Аристотелевская Зарождение науки происходит в Древней Греции. Причины: изменения в сфере материального: рост производительных сил, влекущих изменение социальной структуры, что, в свою очередь, влечет за собой изменение политической структуры (появление политической формы – полисной); расширение географического кругозора древних греков, экспансия Средиземноморья; отсутствие жрецов, монополизирующих всю духовную жизнь; конкуренция в политической сфере жизнь общества. Таким образом, возникла уникальная ситуация – одновременное появление нескольких важных условий – общество разбогатело настолько, что могло способствовать появлению самой науки, искусства. Греки в ходе экспансии других территорий сталкивались с другим укладом, мышлением, религиями; сравнительность вызывает критическое мышление, критичность в отношении к действительности. Философия играет первую роль, именно из философии возникает наука. Аристотель первым разделил философию и науку.

2. Ньютоновская. Вторая научная революция – Ньютоновская (XVII в.). Социо-культурные предпосылки: материалистическая методика (философия). XVI – XVII вв. – эпоха становления капитализма: развитие промышленности – изменения в социальной структуре. Буржуазная революция начинается в Голландии. Центральное событие: Великая английская буржуазная революция. В этих условиях наука не могла остаться неизменной. Раз меняется образ жизни людей, меняется и их мировоззрение, в основе которого появляется наука. Философия (XVII в.): Ф. Бэкон, Р. Декарт, Дж. Локк, Т. Гоббс. Напрямую отношение к науке имеют Ф. Бэкон и Р. Декарт – создание универсальных научных методов. Эти философы, а также Лейбниц внесли существенный вклад в развитие методологического знания.

3. Эйнштейновская. Третья научная революция – Эйнштейновская. Переход в монополистическую, империалистическую стадию, создание конвейерного крупномасштабного производства. Для этого периода характерны первые попытки на принципиально новых основаниях переустроить общественную жизнь. Одна из социокультурных предпосылок: кризис идей эпохи Просвещения (лозунг «свобода – равенство – братство»), основные идеи были реализованы недостаточно успешно. Надежда просветителей на разумное общество не оправдались (бойня – мировая война); поиск иных форм – появление неклассической философии: философия жизни Ницше, Дильтей, экзистенциализм. Основные идеи философии – принцип иррационализма. Происходит появление разнообразных новых течений (русская литература – Л.Н. Толстой – пишет ясно, прозрачно («Война и мир»); у Достоевского нет такой однозначности, противопоставление добра и зла уходит, появляется более сложная литературная картина мира). Такие же черты иррациональности характерны и для науки: начинают реализовываться новые (иррациональные) системы построения научного знания (Фрейд).

Четвертая революция: можно ли увидеть социокультурные предпосылки научной революции. В 50-х гг. началось становление постиндустриального общества, все большая часть населения вовлекается в непроизводственную сферу, возникают глобальные проблемы: экономические, экологические и т.д. Крах системы социализма (80-е гг.), возникновение однополярного мира. В философии все эти особенности выразились в постмодернизме.

Прогностическая роль философского знания: философия начинает чувствовать социокультурные изменения раньше, выступая в роли разведчика.

Научная этика — в современной науке это совокупность официально опубликованных правил, нарушение которых ведет к административному разбирательству.

Учёный должен следовать принципам научной этики, чтобы успешно заниматься научными исследованиями. В науке в качестве идеала провозглашается принцип, что перед лицом истины все исследователи равны, что никакие прошлые заслуги не принимаются во внимание, если речь идёт о научных доказательствах. Не менее важным принципом научного этоса является требование научной честности при изложении результатов исследования. Учёный может ошибаться, но не имеет права подтасовывать результаты, он может повторить уже сделанное открытие, но не имеет права заниматься плагиатом. Ссылки как обязательное условие оформления научной монографии и статьи призваны зафиксировать авторство тех или иных идей и научных текстов, и обеспечивать чёткую селекцию уже известного в науке и новых результатов. Существуют детально разработанные правила о том, каким условиям должны отвечать соавторы научной статьи. Ниже приведена выдержка из правил, разработанных в Гарвардском Университете.

Данные моральные принципы в реальности часто нарушаются. В различных научных сообществах может устанавливаться различная жёсткость санкций за нарушение этических принципов науки. Снижение «качества знания» при нарушении этики науки ведёт к макулатурной науке, идеологизации науки, и коммерциализации науки (когда основной целью является гонка за финансированием). Одним из рычагов контроля за выполнением научной этики является анонимное рецензирование научных статей, проектов и отчетов.

Научная этика — это не только административные правила, но так же и совокупность моральных принципов, которых придерживаются учёные в научной деятельности, и которые обеспечивают функционирование науки.

Роберт Мертон в своих работах по социологии науки создал четыре моральных принципа:

Коллективизм — результаты исследования должны быть открыты для научного сообщества.

Универсализм — оценка любой научной идеи или гипотезы должна зависеть только от её содержания и соответствия техническим стандартам научной деятельности, а не от социальных характеристик её автора, например, его статуса.

Бескорыстность — при опубликовании научных результатов исследователь не должен стремится к получению какой-то личной выгоды, кроме удовлетворения от решения проблемы.

Организованный скептицизм — исследователи должны критично относиться как к собственным идеям, так и к идеям, выдвигающимся их коллегами.

НАУКА И РЕЛИГИЯ

История взаимоотношений религии и науки непроста и насыщена столкновениями. Это стало основанием для пропагандистской формулы «Религия - враг науки». Хотя и в меньшей мере, но столкновения с наукой имеют место также в политике, искусстве, нравственности, да и в других сферах культуры. В антирелигиозной литературе науку сравнивали со светом, а религию - с тьмой и невежеством. Каждому советскому школьнику и студенту был известен тезис об их антагонистичности, который вошел в обыденное сознание как один из наиболее распространенных стереотипов господствовавшей идеологии.

Переосмысливая духовное наследие недавнего прошлого, обратимся к этому стереотипу. Вспомним, что главным признаком религии является вера в сверхъестественное, в чудо и поклонение ему. Последователи религии недаром именуются верующими. Религия провозглашает непознаваемость Бога и ряда догм, таких, например, как «Святая Троица». Впрочем, непознаваемыми провозглашаются и глубинные тайны бытия.

Наука же исходит из признания познаваемости мира и всех его явлений. Ее отождествляют со знанием, основанным на достоверных, истинных сведениях о природе, обществе, человеке и его мышлении. Наука низводит все непознанное, сверхъестественное, чудесное к научно осмысленному. С этой позиции чудо -- порождение слепой веры. Ученые нередко повторяют высказывание Д. Дидро: «Чем больше верят, тем больше чудес».

Религиозная вера основана, прежде всего, на чувстве. Многое в ней от непосредственности, удивления перед мирозданием. Удивления, вызванного не плодами познания, но мистическим откровением. Научная деятельность основана на рассудочности, на правилах логики: установление достоверных фактов, поиск информации, выяснение действительных, естественных условий и причин очередной загадки природы. Религиозный опыт приобретается молениями и иными культовыми переживаниями. Научный опыт постепенно накапливается в ситуациях, которые не допускают даже невольное влияние эмоций и пристрастий ученого на ход его исследований.

Религия обращена к субъективной сфере человеческого бытия, осваивает мир и себя через культовые действия, сокровенные религиозные переживания. Верующий обозревает мир природы сквозь призму культа, и в этом видении мир окрашивается мистическим чувством. Более того, этот способ мировосприятия вынуждает верующего искать Бога в себе, в своем духовном мире. Наука обращена преимущественно к объективной сфере действительности и самого человека. Она обозревает действительность и человека как бы со стороны, намеренно очищая поиск знаний и его результаты от субъективной и тем более мистической окраски.

Религия объясняет мир, опираясь на сказания «священных книг», каноны, догмы, свидетельства пророков, писания «святых отцов» и иных церковных авторитетов. Верующему не положено критиковать их, подвергать сомнению. Научное же объяснение мира - критично. Сомнение - долг ученого, а критичность - веление его профессиональной совести, его почерк, стиль мышления и деятельности на всех этапах исследования.

Отмеченные различия и противоречия между религией и наукой еще более резки в истории их взаимоотношений. Разумеется, они не конкурировали на поле познания; религия не изучает мир, она объясняет его и ориентирует в нем, опираясь на верования. Столкновения между Церковью и наукой были обусловлены тем, что открытия последней нарушали ту картину мира, которая сложилась еще с донаучных времен на основе верований и «священных книг».

Борьба Церкви против свободомыслия - явление, свойственное всем конфессиям. Так, в 1656 г. амстердамские раввины подвергли «великому отлучению» («херем») философа Б. Спинозу за научную критику Библии. Анафема гласила: «Да будет он проклят и днем и ночью, да будет проклят, когда ложится и встает; да будет проклят и при выходе и при входе! Предупреждаем вас, что никто не должен говорить с ним ни устно, ни письменно, не оказывать ему какие-либо услуги, не проживать с ним под одной крышей, не стоять от него ближе, чем на четыре локтя, не читать ничего, им составленного или написанного!»

Многочисленны примеры церковных противостояний науке во всех странах мира. Не следует замалчивать эти трагические реалии прошлого. Вместе с тем не следует абсолютизировать это противостояние: здесь имел место конфликт не столько религии с наукой, сколько Церкви со свободомыслящими учеными. И жертвы церковных гонений отнюдь не всегда были последовательными атеистами. Как уже говорилось, сомнений в религиозности Н. Коперника и Г. Галилея нет. Что же до М. Сервета, то он, считая себя убежденным христианином, увлеченно пропагандировал астрологию. Ученый был казнен, разумеется, не за открытия в медицине, а за свободное толкование канонов религии, пропаганду веротерпимости и обличение религиозного фанатизма. Джордано Бруно в основном, следуя материализму, отдавал дань и пантеизму, разделял заимствованные из каббалы особые приемы колдовства и гадания. Пантеизм поддерживал и материалист Б. Спиноза. А великий М.В. Ломоносов сочинял пронизанные глубокой верой в Бога поэтические оды.

В сознании едва ли не всех ученых прошлого научное мышление мирно уживалось с религиозной верой. Даже тогда, когда они признавали превосходство веры над разумом. Некоторые выдающиеся естествоиспытатели с глубоким интересом предавались богословским занятиям. Так, на склоне лет гениальный И. Ньютон занялся толкованиями Апокалипсиса. Немало естествоиспытателей (в том числе и один из основателей генетики Г. Мендель) были монахами. Но, обращаясь к научным занятиям, они игнорировали постулат о непознаваемости тайн бытия и упомянутые здесь церковные запреты и предписания духовенства. В своей профессиональной деятельности эти ученые руководствовались не догматами и канонами вероучений, а принципами и правилами научного поиска. Вообще, пространство для веры, как таковой, в научной картине мира и на самом деле имеется. Дело в том, что, несмотря на строжайшие правила научного поиска, элементы веры в нем все же неустранимы. Ученые принимают на веру немалую часть научной информации от своих коллег, полагаясь на их авторитет и добросовестность. Момент веры включен в некоторые исходные аксиомы и во многие промежуточные звенья исследований. Вера и интуиция особенно пронизывают заключительную стадию деятельности ученого, где как раз и происходит само «таинство» научного творчества, где рождаются новые идеи, теории, объяснения и прогнозы.

Споры сторонников религии и приверженцев материализма по вопросам миропонимания, скорее всего, будут продолжаться и в будущем: слишком уж отличаются основания мистической веры и рационального знания, да и само видение мира чересчур различно. К тому же расширяющееся поле знания порождает все новые и новые проблемы, которые по-разному толкуют верующие и материалисты.

В заключении скажем, что наука и религия как явления культуры на протяжении веков несли и внедряли прямо противоположные ценности, что приводило к мощному противостоянию между светским обществом и духовенством. Но невозможно полностью разделить эти факторы. Можно говорить лишь о преобладании одного над другим в определенных временных рамках, ибо только в их совокупности возможна гармония в социуме и культуре.

СТРУКТУРНЫЕ УРОВНИ ОРГАНИЗАЦИИ МАТЕРИИ

Развитие - это необратимое, направленное, закономерное изменение материи и сознания, их универсальное свойство; в результате развития возникает новое качественное состояние объекта - его состава или структуры. Развитие - всеобщий принцип объяснения природы, общества и познания, как исторически протекающих событий.

Различают две формы развития, между которыми существует диалектическая связь: эволюционную, связанную с постепенными количественными изменениями объекта (эволюция), и революционную, характеризующуюся качественными изменениями в структуре объекта (революция). Выделяют прогрессивную, восходящую линию развития (прогресс) и регрессивную, нисходящую линию (регресс). Прогресс - направленное развитие, для которого характерен переход от низшего к высшему, от менее совершенного к более совершенному.

Развитие, как бы повторяет уже пройденные ступени, но повторяет их иначе, на более высокой базе, так сказать, по спирали, а не по прямой линии; развитие скачкообразное, катастрофическое, революционное превращение количества в качество; внутренние импульсы к развитию, даваемые противоречием, сталкиванием различных сил и тенденций, действуют на данное тело или в пределах данного явления; непрерывная связь всех сторон каждого явления, связь, дающая единый, закономерный мировой процесс движения, - таковы некоторые черты диалектики, как более содержательного учения о развитии (А.К.Айламазян, Е.В.Стась).

Основной особенностью, отличающей развитие от других динамических процессов, например, от процесса роста, является качественное изменение во времени переменных, характеризующих состояние развивающейся системы (для процесса роста обычно говорят лишь о количественном изменении этих переменных). Причем качественное изменение носит скачкообразный характер. Постепенное монотонное изменение некоторого параметра в течение заметного времени сопровождается соответствующим постепенным изменением состояния системы, но в определенный момент происходит разрыв постепенности: состояние системы меняется скачком, система переходит на новый качественный уровень, количество переходит в качество. Затем повторяется все заново, но уже на новом качественном уровне (А.И.Яблонский).

В изучении развития материи современной наукой сделаны такие серьезные шаги, что сейчас можно с полным правом говорить о превращении идеи развития, эволюции в норму научного мышления для целого ряда областей знания.

Термин "эволюция" имеет несколько значений, однако чаще всего он используется как синоним развития. Так, И.И.Шмальгаузен определяет эволюцию как закономерный процесс исторического развития организма. Иногда термин "эволюция" используют в более узком смысле, понимая ее как одну из форм развития, которая противопоставляется революции.

Эволюция и революция рассматриваются как взаимообусловленные стороны развития, выступая против абсолютизации какой-либо из них. В любых процессах развития естественно наличие чередующихся участков: эволюционных и революционных.

Эволюция в широком смысле - представление об изменениях в природе и в обществе, их направленности, порядке, закономерностях; определенное состояние какой-либо системы рассматривается как результат более или менее длительных изменений ее предшествовавшего состояния; в более узком смысле - представление о медленном постепенном количественном изменении.

Эволюция в биологии - это необратимое историческое развитие живой природы. Определяется изменчивостью, наследственностью и естественным отбором организмов. Сопровождается приспособлением их к условиям существования, образованием видов, преобразованием биогеоценозов и биосферы в целом.

Эволюционная идея зародилась и развилась в XIX в. в качестве оппозиции представлению о неизменности мира, но своего апогея она достигла в нашем столетии, и ее принятие можно считать достижением XX в.

В прошлом веке идея неизменчивости органического мира нашла свое яркое выражение в лице Ж.Кювье. Кювье исходил из своей теории постоянства и неизменности видов и ее двух основных принципов - принципа корреляций и принципа условий существования. Неизменность вида входила, согласно Кювье, в организованность, упорядоченность природы. Его теорию катастроф, или смену фаун и флор, в данной органической области можно назвать теорией эволюции при неизменности видов, теорией нарушения гармонии природы только в результате катастрофических событий общеземного масштаба.

Теория типов, теория гармонии природы и теория неизменности видов прекрасно согласовались друг с другом и составляли фундамент естествознания первой половины XIX в.

Познавательная ценность этих представлений об устойчивости органического мира была огромна. Представления о неизменности видов легли в основу их классификации. Теория типов позволяла делать прогнозы. Гениальная эволюционная идея Ламарка, на полстолетия опередившего свое время, не нашла отклика отчасти потому, что, ополчившись на постоянство вида, он направил свою полемику и против его реальности.

Ч.Дарвин впервые обосновал эволюцию и убедил своих современников именно потому, что он сочетал признание реальности вида с научной теорией его изменяемости.

В XX в. идею гармонии природы сменила идея эволюции. Принцип гармонии природы, теория типов и представление об устойчивости вида отодвинулись в сознании людей на задний план, а многим казались опровергнутыми. С течением времени, однако, полное обоснование эволюционной идеи породило свою противоположность. В науке XX в. вновь возродилась идея устойчивости. И с тем же благородным рвением, с каким человеческая мысль разрушала теорию типов и теорию неизменности видов, она устремилась на поиски механизмов поддержания устойчивости.

В.И.Вернадский сумел раскрыть на уровне биосферы в целом взаимодействие эволюционного процесса и идеи устойчивости живой природы. В 1928 г. В.И.Вернадский писал: "В геохимическом аспекте, входя как часть в мало изменяющуюся, колеблющуюся около неизменного среднего состояния биосферу, жизнь, взятая как целое, представляется устойчивой и неизменной в геологическом времени. В сложной организованности биосферы происходили в пределах живого вещества только перегруппировки химических элементов, а не коренные изменения их состава и количества - перегруппировки, не отражавшиеся на постоянстве и неизменности геологических - в данном случае геохимических процессов, в которых эти живые вещества принимали участие.

Устойчивость видовых форм в течение миллионов лет, миллионов поколений, может, даже составляет самую характерную черту живых форм".

По сложившемуся общему мнению, вершиной творчества Вернадского является учение о биосфере и об эволюционном переходе ее под влиянием человеческого разума в новое состояние - ноосферу: "Масса живого вещества, его энергия и степень организованности в геологической истории Земли непрерывно эволюционировали, никогда не возвращаясь в прежнее состояние. Преобразования в поверхностной оболочке планеты под влиянием деятельности человека стали естественным этапом этой эволюции. Вся биосфера, изменившись коренным образом, должна перейти в новое качественное состояние, сферу действия человеческого разума".

Переводя теорию Дарвина на язык кибернетики, И.И.Шмальгаузен показал, что само преобразование органических форм закономерно осуществляется в рамках относительно стабильного механизма, лежащего на биогеоценотическом уровне организации жизни и действующего по статистическому принципу. Это и есть высший синтез идеи эволюции органических форм с идеей устойчивости и идеей постоянства геохимической функции жизни в биосфере. Так воедино оказались слитыми и вместе с тем поднятыми на новый современный уровень концепции Кювье, Дарвина, Вернадского.

Основные направления поиска в эволюционной теории - это разработка целостных концепций, более адекватно отражающих системный характер изучаемых явлений.

Общепризнанным является тезис о движении как атрибуте материи, и встает вопрос, можно ли считать атрибутом материи развитие. Эти проблемы оживленно дискутируются, и на сегодня общепризнанной точки зрения нет. Существует точка зрения, что движение - более общий момент, а развитие - частный случай движения, т.е. развитие не является атрибутом материи. Другая точка зрения настаивает на атрибутивном характере развития. Решение вопроса об атрибутивном характере развития связано с тем содержанием, которое вкладывается в понятие "развитие". Обычно выделяют три подхода:

- развитие как круговорот;

- развитие как необратимое качественное изменение;

- развитие как бесконечное движение от низшего к высшему.

Эти подходы справедливы, когда речь идет не о материи вообще, а о каком-либо материальном образовании.

К материи в целом, материи как таковой понятие развития приложимо, но не в том смысле, в каком мы говорим о развитии отдельных предметных областей. Материя как объективная реальность - это именно вся совокупность вещей и явлений окружающего нас мира. Она непрерывно развивается, и это развитие не означает ничего иного, кроме непрерывного развития всех ее конкретных проявлений. Материя есть предельно общая философская категория, а естествознание всегда имело и будет иметь дело с "материей на данном уровне проникновения в нее". Единственно известной нам материи мы сегодня можем приписывать развитие не только на основании общефилософских соображений, а и на основе достаточно апробированных естественнонаучных теорий.

Тезис о развитии как атрибуте материи до недавнего времени трудно было согласовать с данными естествознания, где единственный закон, включающий направленность происходящих изменений, - это второе начало термодинамики, говорящее скорее о тенденции к деградации. Второе начало является одним из естественнонаучных выражений принципа развития, определяющим эволюцию материи. Поскольку принцип увеличения энтропии отражает необратимость всех реальных процессов и тем самым означает необратимое изменение всех известных форм материи, т.е. их переход в какие-то иные формы, для которых уже будут недействительны существующие законы, то его можно считать естественнонаучным выражением философского принципа развития.

Второе начало имеет тот же статус, что и первое начало (закон сохранения энергии), и его действие не противоречит развитию Вселенной. Напротив, сам принцип развития находит свое естественнонаучное обоснование во втором начале термодинамики. Принцип возрастания энтропии рассматривается как одна из естественнонаучных конкретизаций принципа развития, отражающая образование новых материальных форм и структурных уровней в неорганической природе.

Одной из фундаментальных черт современного естествознания и вместе с тем направлений его диалектизации является все более глубокое и органичное проникновение в систему наук о природе эволюционных идей, которые неразрывно связаны с концепцией иерархии качественно своеобразных структурных уровней материальной организации, выступающих как ступени, этапы эволюции природных объектов. Если всего лишь несколько десятилетий назад исследования эволюционных процессов в различных областях естествознания были довольно слабо связаны между собой, то сейчас положение изменилось радикальным образом: выявляются контуры единого (в многообразии своих конкретных проявлений) процесса эволюции охваченных исследованиями областей природы.

Практика современной научно-исследовательской деятельности выдвигает новые задачи в понимании эволюционных процессов, поэтому формируется некий слой знаний, не имеющий статуса отдельной науки, но составляющий важный компонент культуры мышления современного ученого. Этот слой знания является как бы промежуточным между философией, диалектикой как общей теорией развития и конкретно-научными эволюционными концепциями, отражающими специфические закономерности эволюции живых организмов, химических систем, земной коры, планет и звезд.

Можно, видимо, говорить о нескольких взаимосвязанных и соподчиненных понятиях эволюции в рамках естественнонаучной картины мира. Наиболее общим из них и применимым практически в пределах всей доступной исследованию области природы, неживой и живой, следует считать понятие эволюции как необратимого изменения структуры природных объектов.

В классическом естествознании, и, прежде всего в естествознании прошлого века, учение о принципах структурной организации материи было представлено классическим атомизмом. Именно на атомизме замыкались теоретические обобщения, берущие начало в каждой из наук. Идеи атомизма служили основой для синтеза знаний и его своеобразной точкой опоры. В наши дни под воздействием бурного развития всех областей естествознания классический атомизм подвергается интенсивным преобразованиям. Наиболее существенными и широко значимыми изменениями в наших представлениях о принципах структурной организации материи являются те изменения, которые выражаются в нынешнем развитии системных представлений.

Общая схема иерархического ступенчатого строения материи, связанная с признанием существования относительно самостоятельных и устойчивых уровней, узловых точек в ряду делений материи, сохраняет свою силу и эвристические значения. Согласно этой схеме дискретные объекты определенного уровня материи, вступая в специфические взаимодействия, служат исходными при образовании и развитии принципиально новых типов объектов с иными свойствами и формами взаимодействия. При этом большая устойчивость и самостоятельность исходных, относительно элементарных объектов обусловливает повторяющиеся и сохраняющиеся свойства, отношения и закономерности объектов более высокого уровня.

Это положение едино для систем различной природы.

Любая сложная система, возникшая в процессе эволюции по методу проб и ошибок, должна иметь иерархическую организацию. Действительно, не имея возможности перебрать все мыслимые соединения из нескольких элементов, а найдя научную комбинацию, размножает ее и использует - как целое - в качестве элемента, который можно полностью связать с небольшим числом других таких же элементов. Так возникает иерархия. Это понятие играет огромную роль. Фактически всякая сложная система, как возникшая естественно, так и созданная человеком, может считаться организованной, только если она основана на некоей иерархии или переплетении нескольких иерархий. Мы не знаем организованных систем, устроенных иначе.

Концептуальные формы выражения идеи структурных уровней материи многообразны. Определенное развитие идея уровней получила в ходе анализа концептуального аппарата фундаментальных, относительно завершенных физических теорий, теории эволюции живых организмов.

Одна из актуальных проблем, которую ставит изучение иерархии структурных уровней природы, заключается в поисках границ этой иерархии как в мегамире, так и в микромире. Иерархичность уровней отражается в иерархичности классификационных понятий, характерных для описательных теорий различных наук. С наличием определенных уровней материи связано существование ряда самостоятельных научных дисциплин.

Уровни становятся такими спиралями только при всестороннем развитии преемственности, без которой могут быть лишь хаотические смены круговоротов изменений. Поэтому "развитие развития" возможно только на основе обогащения форм преемственности, которая позволяет в той или иной мере сохранять достигнутые преобразования, чтобы включать их в линии процессов эволюции, а также онтогенеза. Возникновение нового без преемственности обречено было бы каждый раз начинать развитие с "самого начала".

В ходе прогресса число взаимосвязанных уровней возрастает и объекты становятся все более многоуровневыми. Объекты каждой последующей ступени возникают и развиваются в результате объединения и дифференциации определенных множеств объектов предыдущей ступени. Системы становятся все более многоуровневыми. Сложность системы возрастает не только потому, что возрастает число уровней. Существенное значение приобретает развитие новых взаимосвязей между уровнями и со средой, общей для таких объектов и объединений. В этих взаимосвязях все большее значение получает информация.

СТРУКТУРНЫЕ УРОВНИ ОРГАНИЗАЦИИ МАТЕРИИ

Развитие - это необратимое, направленное, закономерное изменение материи и сознания, их универсальное свойство; в результате развития возникает новое качественное состояние объекта - его состава или структуры. Развитие - всеобщий принцип объяснения природы, общества и познания, как исторически протекающих событий.

Различают две формы развития, между которыми существует диалектическая связь: эволюционную, связанную с постепенными количественными изменениями объекта (эволюция), и революционную, характеризующуюся качественными изменениями в структуре объекта (революция). Выделяют прогрессивную, восходящую линию развития (прогресс) и регрессивную, нисходящую линию (регресс). Прогресс - направленное развитие, для которого характерен переход от низшего к высшему, от менее совершенного к более совершенному.

Развитие, как бы повторяет уже пройденные ступени, но повторяет их иначе, на более высокой базе, так сказать, по спирали, а не по прямой линии; развитие скачкообразное, катастрофическое, революционное превращение количества в качество; внутренние импульсы к развитию, даваемые противоречием, сталкиванием различных сил и тенденций, действуют на данное тело или в пределах данного явления; непрерывная связь всех сторон каждого явления, связь, дающая единый, закономерный мировой процесс движения, - таковы некоторые черты диалектики, как более содержательного учения о развитии (А.К.Айламазян, Е.В.Стась).

Основной особенностью, отличающей развитие от других динамических процессов, например, от процесса роста, является качественное изменение во времени переменных, характеризующих состояние развивающейся системы (для процесса роста обычно говорят лишь о количественном изменении этих переменных). Причем качественное изменение носит скачкообразный характер. Постепенное монотонное изменение некоторого параметра в течение заметного времени сопровождается соответствующим постепенным изменением состояния системы, но в определенный момент происходит разрыв постепенности: состояние системы меняется скачком, система переходит на новый качественный уровень, количество переходит в качество. Затем повторяется все заново, но уже на новом качественном уровне (А.И.Яблонский).

В изучении развития материи современной наукой сделаны такие серьезные шаги, что сейчас можно с полным правом говорить о превращении идеи развития, эволюции в норму научного мышления для целого ряда областей знания.

Термин "эволюция" имеет несколько значений, однако чаще всего он используется как синоним развития. Так, И.И.Шмальгаузен определяет эволюцию как закономерный процесс исторического развития организма. Иногда термин "эволюция" используют в более узком смысле, понимая ее как одну из форм развития, которая противопоставляется революции.

Эволюция и революция рассматриваются как взаимообусловленные стороны развития, выступая против абсолютизации какой-либо из них. В любых процессах развития естественно наличие чередующихся участков: эволюционных и революционных.

Эволюция в широком смысле - представление об изменениях в природе и в обществе, их направленности, порядке, закономерностях; определенное состояние какой-либо системы рассматривается как результат более или менее длительных изменений ее предшествовавшего состояния; в более узком смысле - представление о медленном постепенном количественном изменении.

Эволюция в биологии - это необратимое историческое развитие живой природы. Определяется изменчивостью, наследственностью и естественным отбором организмов. Сопровождается приспособлением их к условиям существования, образованием видов, преобразованием биогеоценозов и биосферы в целом.

Эволюционная идея зародилась и развилась в XIX в. в качестве оппозиции представлению о неизменности мира, но своего апогея она достигла в нашем столетии, и ее принятие можно считать достижением XX в.

В прошлом веке идея неизменчивости органического мира нашла свое яркое выражение в лице Ж.Кювье. Кювье исходил из своей теории постоянства и неизменности видов и ее двух основных принципов - принципа корреляций и принципа условий существования. Неизменность вида входила, согласно Кювье, в организованность, упорядоченность природы. Его теорию катастроф, или смену фаун и флор, в данной органической области можно назвать теорией эволюции при неизменности видов, теорией нарушения гармонии природы только в результате катастрофических событий общеземного масштаба.

Теория типов, теория гармонии природы и теория неизменности видов прекрасно согласовались друг с другом и составляли фундамент естествознания первой половины XIX в.

Познавательная ценность этих представлений об устойчивости органического мира была огромна. Представления о неизменности видов легли в основу их классификации. Теория типов позволяла делать прогнозы. Гениальная эволюционная идея Ламарка, на полстолетия опередившего свое время, не нашла отклика отчасти потому, что, ополчившись на постоянство вида, он направил свою полемику и против его реальности.

Ч.Дарвин впервые обосновал эволюцию и убедил своих современников именно потому, что он сочетал признание реальности вида с научной теорией его изменяемости.

В XX в. идею гармонии природы сменила идея эволюции. Принцип гармонии природы, теория типов и представление об устойчивости вида отодвинулись в сознании людей на задний план, а многим казались опровергнутыми. С течением времени, однако, полное обоснование эволюционной идеи породило свою противоположность. В науке XX в. вновь возродилась идея устойчивости. И с тем же благородным рвением, с каким человеческая мысль разрушала теорию типов и теорию неизменности видов, она устремилась на поиски механизмов поддержания устойчивости.

В.И.Вернадский сумел раскрыть на уровне биосферы в целом взаимодействие эволюционного процесса и идеи устойчивости живой природы. В 1928 г. В.И.Вернадский писал: "В геохимическом аспекте, входя как часть в мало изменяющуюся, колеблющуюся около неизменного среднего состояния биосферу, жизнь, взятая как целое, представляется устойчивой и неизменной в геологическом времени. В сложной организованности биосферы происходили в пределах живого вещества только перегруппировки химических элементов, а не коренные изменения их состава и количества - перегруппировки, не отражавшиеся на постоянстве и неизменности геологических - в данном случае геохимических процессов, в которых эти живые вещества принимали участие.

Устойчивость видовых форм в течение миллионов лет, миллионов поколений, может, даже составляет самую характерную черту живых форм".

По сложившемуся общему мнению, вершиной творчества Вернадского является учение о биосфере и об эволюционном переходе ее под влиянием человеческого разума в новое состояние - ноосферу: "Масса живого вещества, его энергия и степень организованности в геологической истории Земли непрерывно эволюционировали, никогда не возвращаясь в прежнее состояние. Преобразования в поверхностной оболочке планеты под влиянием деятельности человека стали естественным этапом этой эволюции. Вся биосфера, изменившись коренным образом, должна перейти в новое качественное состояние, сферу действия человеческого разума".

Переводя теорию Дарвина на язык кибернетики, И.И.Шмальгаузен показал, что само преобразование органических форм закономерно осуществляется в рамках относительно стабильного механизма, лежащего на биогеоценотическом уровне организации жизни и действующего по статистическому принципу. Это и есть высший синтез идеи эволюции органических форм с идеей устойчивости и идеей постоянства геохимической функции жизни в биосфере. Так воедино оказались слитыми и вместе с тем поднятыми на новый современный уровень концепции Кювье, Дарвина, Вернадского.

Основные направления поиска в эволюционной теории - это разработка целостных концепций, более адекватно отражающих системный характер изучаемых явлений.

Общепризнанным является тезис о движении как атрибуте материи, и встает вопрос, можно ли считать атрибутом материи развитие. Эти проблемы оживленно дискутируются, и на сегодня общепризнанной точки зрения нет. Существует точка зрения, что движение - более общий момент, а развитие - частный случай движения, т.е. развитие не является атрибутом материи. Другая точка зрения настаивает на атрибутивном характере развития. Решение вопроса об атрибутивном характере развития связано с тем содержанием, которое вкладывается в понятие "развитие". Обычно выделяют три подхода:

- развитие как круговорот;

- развитие как необратимое качественное изменение;

- развитие как бесконечное движение от низшего к высшему.

Эти подходы справедливы, когда речь идет не о материи вообще, а о каком-либо материальном образовании.

К материи в целом, материи как таковой понятие развития приложимо, но не в том смысле, в каком мы говорим о развитии отдельных предметных областей. Материя как объективная реальность - это именно вся совокупность вещей и явлений окружающего нас мира. Она непрерывно развивается, и это развитие не означает ничего иного, кроме непрерывного развития всех ее конкретных проявлений. Материя есть предельно общая философская категория, а естествознание всегда имело и будет иметь дело с "материей на данном уровне проникновения в нее". Единственно известной нам материи мы сегодня можем приписывать развитие не только на основании общефилософских соображений, а и на основе достаточно апробированных естественнонаучных теорий.

Тезис о развитии как атрибуте материи до недавнего времени трудно было согласовать с данными естествознания, где единственный закон, включающий направленность происходящих изменений, - это второе начало термодинамики, говорящее скорее о тенденции к деградации. Второе начало является одним из естественнонаучных выражений принципа развития, определяющим эволюцию материи. Поскольку принцип увеличения энтропии отражает необратимость всех реальных процессов и тем самым означает необратимое изменение всех известных форм материи, т.е. их переход в какие-то иные формы, для которых уже будут недействительны существующие законы, то его можно считать естественнонаучным выражением философского принципа развития.

Второе начало имеет тот же статус, что и первое начало (закон сохранения энергии), и его действие не противоречит развитию Вселенной. Напротив, сам принцип развития находит свое естественнонаучное обоснование во втором начале термодинамики. Принцип возрастания энтропии рассматривается как одна из естественнонаучных конкретизаций принципа развития, отражающая образование новых материальных форм и структурных уровней в неорганической природе.

Одной из фундаментальных черт современного естествознания и вместе с тем направлений его диалектизации является все более глубокое и органичное проникновение в систему наук о природе эволюционных идей, которые неразрывно связаны с концепцией иерархии качественно своеобразных структурных уровней материальной организации, выступающих как ступени, этапы эволюции природных объектов. Если всего лишь несколько десятилетий назад исследования эволюционных процессов в различных областях естествознания были довольно слабо связаны между собой, то сейчас положение изменилось радикальным образом: выявляются контуры единого (в многообразии своих конкретных проявлений) процесса эволюции охваченных исследованиями областей природы.

Практика современной научно-исследовательской деятельности выдвигает новые задачи в понимании эволюционных процессов, поэтому формируется некий слой знаний, не имеющий статуса отдельной науки, но составляющий важный компонент культуры мышления современного ученого. Этот слой знания является как бы промежуточным между философией, диалектикой как общей теорией развития и конкретно-научными эволюционными концепциями, отражающими специфические закономерности эволюции живых организмов, химических систем, земной коры, планет и звезд.

Можно, видимо, говорить о нескольких взаимосвязанных и соподчиненных понятиях эволюции в рамках естественнонаучной картины мира. Наиболее общим из них и применимым практически в пределах всей доступной исследованию области природы, неживой и живой, следует считать понятие эволюции как необратимого изменения структуры природных объектов.

В классическом естествознании, и, прежде всего в естествознании прошлого века, учение о принципах структурной организации материи было представлено классическим атомизмом. Именно на атомизме замыкались теоретические обобщения, берущие начало в каждой из наук. Идеи атомизма служили основой для синтеза знаний и его своеобразной точкой опоры. В наши дни под воздействием бурного развития всех областей естествознания классический атомизм подвергается интенсивным преобразованиям. Наиболее существенными и широко значимыми изменениями в наших представлениях о принципах структурной организации материи являются те изменения, которые выражаются в нынешнем развитии системных представлений.

Общая схема иерархического ступенчатого строения материи, связанная с признанием существования относительно самостоятельных и устойчивых уровней, узловых точек в ряду делений материи, сохраняет свою силу и эвристические значения. Согласно этой схеме дискретные объекты определенного уровня материи, вступая в специфические взаимодействия, служат исходными при образовании и развитии принципиально новых типов объектов с иными свойствами и формами взаимодействия. При этом большая устойчивость и самостоятельность исходных, относительно элементарных объектов обусловливает повторяющиеся и сохраняющиеся свойства, отношения и закономерности объектов более высокого уровня.

Это положение едино для систем различной природы.

Любая сложная система, возникшая в процессе эволюции по методу проб и ошибок, должна иметь иерархическую организацию. Действительно, не имея возможности перебрать все мыслимые соединения из нескольких элементов, а найдя научную комбинацию, размножает ее и использует - как целое - в качестве элемента, который можно полностью связать с небольшим числом других таких же элементов. Так возникает иерархия. Это понятие играет огромную роль. Фактически всякая сложная система, как возникшая естественно, так и созданная человеком, может считаться организованной, только если она основана на некоей иерархии или переплетении нескольких иерархий. Мы не знаем организованных систем, устроенных иначе.

Концептуальные формы выражения идеи структурных уровней материи многообразны. Определенное развитие идея уровней получила в ходе анализа концептуального аппарата фундаментальных, относительно завершенных физических теорий, теории эволюции живых организмов.

Одна из актуальных проблем, которую ставит изучение иерархии структурных уровней природы, заключается в поисках границ этой иерархии как в мегамире, так и в микромире. Иерархичность уровней отражается в иерархичности классификационных понятий, характерных для описательных теорий различных наук. С наличием определенных уровней материи связано существование ряда самостоятельных научных дисциплин.

Уровни становятся такими спиралями только при всестороннем развитии преемственности, без которой могут быть лишь хаотические смены круговоротов изменений. Поэтому "развитие развития" возможно только на основе обогащения форм преемственности, которая позволяет в той или иной мере сохранять достигнутые преобразования, чтобы включать их в линии процессов эволюции, а также онтогенеза. Возникновение нового без преемственности обречено было бы каждый раз начинать развитие с "самого начала".

В ходе прогресса число взаимосвязанных уровней возрастает и объекты становятся все более многоуровневыми. Объекты каждой последующей ступени возникают и развиваются в результате объединения и дифференциации определенных множеств объектов предыдущей ступени. Системы становятся все более многоуровневыми. Сложность системы возрастает не только потому, что возрастает число уровней. Существенное значение приобретает развитие новых взаимосвязей между уровнями и со средой, общей для таких объектов и объединений. В этих взаимосвязях все большее значение получает информация.

Корпускулярно-волновой дуализм, лежащее в основе квантовой механики положение о том, что в поведении микрообъектов проявляются как корпускулярные, так и волновые черты.

По представлениям классической (неквантовой) физики, движение частиц и распространение волн различаются принципиально. Однако опыты по вырыванию светом электронов с поверхности металлов (фотоэффект), изучение рассеяния света на электронах (Комптона эффект) и ряд др. экспериментов убедительно показали, что свет — объект, имеющий, согласно классической теории, волновую природу, — ведёт себя подобно потоку частиц. Световая "частица" (фотон) имеет энергию Е и импульс р, связанные с частотой n и длиной волны l света соотношениями: E=hn, p=h/l, где h — Планка постоянная. С другой стороны, оказалось, что пучок электронов, падающих на кристалл, даёт дифракционную картину, которую нельзя понять иначе, как на основе волновых представлений. Позже было установлено, что это явление свойственно вообще всем микрочастицам (см. Волны де Бройля, Дифракция частиц).

Таким образом, характерной особенностью микромира является своеобразная двойственность, дуализм корпускулярных и волновых свойств, который не может быть понят в рамках классической физики. Так, возникновение дифракционной картины при рассеянии частиц несовместимо с представлением о движении их по траекториям. Естественное истолкование К.-в. д. получил в квантовой механике.

Мир элементарных частиц

В середине и второй половине ХХ века в тех разделах физики, которые заняты изучением фундаментальной структуры материи, были получены поистине удивительные результаты. Прежде всего это проявилось в открытии целого множества новых субатомных частиц. Их обычно называют элементарными частицами, но далеко не все из них действительно элементарны. Многие из них в свою очередь состоят из еще более элементарных частичек.

Мир субатомных частиц поистине многообразен. К ним относятся протоны и нейтроны, составляющие атомные ядра, а также обращающиеся вокруг ядер электроны. Но есть и такие частицы, которые в окружающем нас веществе практически не встречаются. Время их жизни чрезвычайно мало, оно составляет мельчайшие доли секунды. По истечении этого чрезвычайно короткого времени они распадаются на обычные частицы. Таких нестабильных короткоживущих частиц поразительно много: их известно уже несколько сотен.

В 60-70-е годы физики были совершенно сбиты с толку многочисленностью, разнообразием и необычностью вновь открытых субатомных частиц. Казалось, им не будет конца. Совершенно непонятно, для чего столько частиц. Являются ли эти элементарные частицы хаотическими и случайными осколками материи? Или, возможно, они таят в себе ключ к познанию структуры Вселенной? Развитие физики в последующие десятилетия показало, что в существовании такой структуры нет никаких сомнений. В конце ХХ в. физика начинает понимать, каково значение каждой из элементарных частиц.

Миру субатомных частиц присущ глубокий и рациональный порядок. В основе этого порядка - фундаментальные физические взаимодействия.

Фундаментальные физические взаимодействия

В свой повседневной жизни человек сталкивается с множеством сил, действующих на тела. Здесь и сила ветра или набегающего потока воды, давление воздуха, мощный выброс взрывающихся химических веществ, мускульная сила человека, вес тяжелых объектов, давление квантов света, притяжение и отталкивание электрических зарядов, сейсмические волны, вызывающие подчас катастрофические разрушения, и вулканические извержения, приводившие к гибели цивилизации, и т. д. Одни силы действуют непосредственно при контакте с телом, другие, например, гравитация, действуют на расстоянии, через пространство. Но, как выяснилось в результате развития теоретического естествознания, несмотря на столь большое разнообразие, все действующие в природе силы можно свести всего лишь к четырем фундаментальным взаимодействиям. Именно эти взаимодействия в конечном счете отвечают за все изменения в мире, именно они являются источником всех преобразований тел и процессов.

Изучение свойств фундаментальных взаимодействий составляет главную задачу современной физики.

Гравитация

В истории физики гравитация (тяготение) стала первым из четырех фундаментальных взаимодействий предметом научного исследования. После появления в ХVII в. ньютоновской теории гравитации - закона всемирного тяготения - удалось впервые осознать истинную роль гравитации как силы природы. Гравитация обладает рядом особенностей, отличающих ее от других фундаментальных взаимодействий.

Наиболее удивительной особенностью гравитации является ее малая интенсивность. Величина гравитационного взаимодействия между компонентами атома водорода составляет 10n , где n = - 3 9 , от силы взаимодействия электрических зарядов. (Если бы размеры атома водорода определялись гравитацией, а не взаимодействием между электрическими зарядами, то низшая (самая близкая к ядру) орбита электрона по размерам превосходила бы доступную наблюдению часть Вселенной!) (Если бы размеры атома водорода определялись гравитацией, а не взаимодействием между электрическими зарядами, то низшая (самая близкая к ядру) орбита электрона по размерам превосходила бы доступную наблюдению часть Вселенной!). Может показаться удивительным, что мы вообще ощущаем гравитацию, коль скоро она так слаба. Как она может оказаться господствующей силой во Вселенной?

Все дело во второй удивительной черте гравитации - ее универсальности. Ничто во Вселенной не избавлено от гравитации. Каждая частица испытывает на себе действие гравитации и сама является источником гравитации. Поскольку каждая частица вещества вызывает гравитационное притяжение, гравитация возрастает по мере образования все больших скоплений вещества. Мы ощущаем гравитацию в повседневной жизни потому, что все атомы Земли сообща притягивают нас. И хотя действие гравитационного притяжения одного атома пренебрежимо мало, но результирующая сила притяжения со стороны всех атомов может быть значительной.

Гравитация - дальнодействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. В астрономическом масштабе гравитационное взаимодействие, как правило, играет главную роль. Благодаря дальнодействию гравитация не позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике.

Сила гравитации, действующая между частицами, всегда представляет собой силу притяжения: она стремится сблизить частицы. Гравитационное отталкивание никогда еще не наблюдалось (Хотя в традициях квазинаучной мифологии есть целая область, которая называется левитация - поиск "фактов" антигравитации). Поскольку энергия, запасенная в любой частице, всегда положительна и наделяет ее положительной массой, частицы под действием гравитации всегда стремятся сблизиться.

Чем является гравитация, неким полем или проявлением искривления пространства-времени, - на этот вопрос пока еще однозначного ответа нет. Как уже отмечалось нами, существуют разные мнения и концепции физиков на сей счет.

Электромагнетизм

По величине электрические силы намного превосходят гравитационные. В отличие от слабого гравитационного взаимодействия, электрические силы, действующие между телами обычных размеров, можно легко наблюдать. Электромагнетизм известен людям с незапамятных времен (полярные сияния, вспышки молнии и др.).

В течение долгого времени электрические и магнитные процессы изучались независимо друг от друга. Как мы уже знаем, решающий шаг в познании электромагнетизма сделал в середине XIX в. Дж. К. Максвелл, объединивший электричество и магнетизм в единой теории электромагнетизма - первой единой теории поля.

Существование электрона было твердо установлено в 90-e годы прошлого столетия. Ныне известно, что электрический заряд любой частицы вещества всегда кратен фундаментальной единице заряда - своего рода "атому" заряда. Почему это так - чрезвычайно интересный вопрос. Однако не все материальные частицы являются носителями электрического заряда. Например, фотон и нейтрино электрически нейтральны. В этом отношении электричество отличается от гравитации. Все материальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заряженные частицы.

Как и электрические заряды, одноименные магнитные полюса отталкиваются, а разноименные - притягиваются. Однако в отличие от электрических зарядов магнитные полюса встречаются не по отдельности, а только парами - северный полюс и южный полюс. Еще с древнейших времен известны попытки получить посредством разделения магнита лишь один изолированный магнитный полюс - монополь. Но все они заканчивались неудачей. Может быть, существование изолированных магнитных полюсов в природе исключено? Определенного ответа на этот вопрос пока не существует. Некоторые теоретические концепции допускают возможность существования монополя.

Как электрическое и гравитационное взаимодействия, взаимодействие магнитных полюсов подчиняется закону обратных квадратов. Следовательно, электрическая и магнитная силы "дальнодействующие", и их действие ощутимо на больших расстояниях от источника. Так, магнитное поле Земли простирается далеко в космическое пространство. Мощное магнитное поле Солнца заполняет всю Солнечную систему. Существуют и галактические магнитные поля.

Электромагнитное взаимодействие определяет структуру атомов и отвечает за подавляющее большинство физических и химических явлений и процессов (за исключением ядерных).

Слабое взаимодействие

К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада.

У бета-распада обнаружилась в высшей степени странная особенность. Исследования приводили к выводу, что в этом распаде нарушается один из фундаментальных законов физики - закон сохранения энергии. Казалось, что в этом распаде часть энергии куда-то исчезала. Чтобы "спасти" закон сохранения энергии, В. Паули предположил, что вместе с электроном при бета -распаде вылетает еще одна частица. Она - нейтральная и обладающая необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку "нейтрино".

Но предсказание и обнаружение нейтрино - это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, но здесь оставалось много загадочного. Дело в том, что и электроны и нейтрино испускались нестабильными ядрами. Но было неопровержимо доказано, что внутри ядер таких частиц нет. Как же они возникали? Было высказано предположение, что электроны и нейтрино не существуют в ядре в "готовом виде", а каким-то образом образуются из энергии радиоактивного ядра. Дальнейшие исследования показали, что входящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляются три новые. Анализ приводил к выводу, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой. Исследования показали, что этой силе соответствует некоторое слабое взаимодействие.

Оно гораздо слабее электромагнитного, хотя и сильнее гравитационного. Оно распространяется на очень незначительных расстояниях. Радиус слабого взаимодействия очень мал. Слабое взаимодействие прекращается на расстоянии, большем 10n см (где n = - 1 6 ) от источника и потому не может влиять на макроскопические объекты, а ограничивается отдельными субатомными частицами. Впоследствии выяснилось, что большинство нестабильных элементарных частиц участвует в слабом взаимодействии.

Теория слабого взаимодействия была создана в конце б0-х годов С. Вайнбергом и А. Саламом. С момента построения Максвеллом теории электромагнитного поля создание этой теории явилось самым крупным шагом на пути к единству физики.

Сильное взаимодействие

Последнее в ряду фундаментальных взаимодействий - сильное взаимодействие, которое является источником огромной энергии. Наиболее характерный пример энергии, высвобождаемой сильным взаимодействием, - это наше Солнце. В недрах Солнца и звезд, начиная с определенного времени, непрерывно протекают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции.

К представлению о существовании сильного взаимодействия физика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация для этого слишком слаба; очевидно, необходимо какое-то новое взаимодействие, причем, более сильное, чем электромагнитное. Впоследствии оно было обнаружено. Выяснилось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Радиус действия новой силы оказался очень малым. Сильное взаимодействие резко падает на расстоянии от протона или нейтрона, превышающем примерно 10n см (где n = - 13).

Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы. Его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны не подвластны ему. В сильном взаимодействии участвуют только более тяжелые частицы.

Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился в начале 60-х годов, когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из кварков.

Таким образом, в фундаментальных физических взаимодействиях четко прослеживается различие сил дальнодействующих и близкодействующих. С одной стороны, имеют место взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой - взаимодействия малого радиуса действия (сильное и слабое). Мир физических элементов в целом развертывается в единстве этих двух полярностей и является воплощением единства предельно малого и предельно большого - близкодействия в микромире и дальнодействия во всей Вселенной.

Проблема единства физики

Познание есть обобщение действительности, и поэтому цель науки - поиск единства в природе, связывание разрозненных фрагментов знания в единую картину. Для того чтобы создать единую систему, нужно открыть связующее звено между различными отраслями знания, некоторое фундаментальное отношение. Поиск таких связей и отношений - одна из главных задач научного исследования. Всякий раз, когда удается установить такие новые связи, значительно углубляется понимание окружающего мира, формируются новые способы познания, которые указывают путь к не известным ранее явлениям.

Установление глубинных связей между различными областями природы - это одновременно и синтез знания, и метод, направляющий научные исследования по новым, непроторенным дорогам. Выявление Ньютоном связи между притяжением тел в земных условиях и движением планет ознаменовало собой рождение классической механики, на основе которой построена технологическая база современной цивилизации. Установление связи термодинамических свойств газа с хаотическим движением молекул поставило на прочную основу атомно-молекулярную теорию вещества. В середине прошлого столетия Максвелл создал единую электромагнитную теорию, охватившую как электрические, так и магнитные явления. Затем в 20-х г. нашего века Эйнштейн предпринимал попытки объединить в единой теории электромагнетизм и гравитацию.

Но к середине ХХ в. положение в физике радикально изменилось: были открыты два новых фундаментальных взаимодействия - сильное и слабое, т.е. при создании единой физики приходится считаться уже не с двумя, а с четырьмя фундаментальными взаимодействиями. Это несколько охладило пыл тех, кто надеялся на быстрое решение данной проблемы. Но сам замысел под сомнение всерьез не ставился, и увлеченность идеей единого описания не прошла.

Существует точка зрения, что все четыре (или хотя бы три) взаимодействия представляют собой явления одной природы и должно быть найдено их единое теоретическое описание. Перспектива создания единой теории мира физических элементов на основе одного-единственного фундаментального взаимодействия остается весьма привлекательной. Это главная мечта физиков ХХ в. Но долгое время она оставалась лишь мечтой, и очень неопределенной.

Однако во второй половине ХХ в. появились предпосылки осуществления этой мечты и уверенность, что это дело отнюдь не отдаленного будущего. Похоже, что вскоре она вполне может стать реальностью. Решающий шаг на пути к единой теории был сделан в 6О-70-х гг. с созданием сначала теории кварков, а затем и теории электрослабого взаимодействия. Есть основания для мнения, что мы стоим на пороге более могущественного и глубокого объединения, чем когда-либо ранее. Среди физиков усиливается убеждение, что начинают вырисовываться контуры единой теории всех фундаментальных взаимодействий - Великого объединения.

Классификация элементарных частиц

Характеристики субатомных частиц

Исторически первыми экспериментально обнаруженными элементарными частицами были электрон, протон, а затем нейтрон. Казалось, что этих частиц и фотона (кванта электромагнитного поля) достаточно для построения известных форм вещества - атомов и молекул. Вещество при таком подходе строилось из протонов, нейтронов и электронов, а фотоны осуществляли взаимодействие между ними. Однако, вскоре выяснилось, что мир устроен значительно сложнее. Было установлено, что каждой частице соответствует своя античастица, отличающаяся от нее лишь знаком заряда. Для частиц с нулевыми значениями всех зарядов античастица совпадает с частицей (пример - фотон). Далее, по мере развития экспериментальной ядерной физики к этим частицам добавилось еще свыше 300 частиц (!).

Характеристиками субатомных частиц являются масса, электрический заряд, спин (собственный момент количества движения), время жизни частицы, магнитный момент, пространственная четность, лептонный заряд, барионный заряд и др.

Когда говорят о массе частицы, имеют в виду ее массу покоя, поскольку эта масса не зависит от состояния движения. Частица, имеющая нулевую массу покоя, движется со скоростью света (фотон). Нет двух частиц с одинаковыми массами. Электрон - самая легкая частица с ненулевой массой покоя. Протон и нейтрон тяжелее электрона почти в 2000 раз. А самая тяжелая из известных элементарных частиц (Z -частицы) обладает массой в 200 000 раз больше массы электрона.

Электрический заряд меняется в довольно узком диапазоне и всегда кратен фундаментальной единице заряда - заряду электрона (-1). Некоторые частицы (фотон, нейтрино) вовсе не имеют заряда.

Важная характеристика частицы - спин. Он также всегда кратен некоторой фундаментальной единице, которая выбрана равной Ѕ . Так, протон, нейтрон и электрон имеют спин Ѕ , а спин фотона равен 1. Известны частицы со спином 0, 3 / 2 , 2. Частица со спином 0 при любом угле поворота выглядит одинаково. Частицы со спином 1 принимают тот же вид после полного оборота на 360° . Частица со спином 1/2 приобретает прежний вид после оборота на 720° и т.д. Частица со спином 2 принимает прежнее положение через пол-оборота (180° ). Частиц со спином более 2 не обнаружено, и возможно их вообще не существует. В зависимости от спина, все частицы делятся на две группы:

бозоны - частицы со спинами 0,1 и 2;

фермионы - частицы с полуцелыми спинами (Ѕ ,3 / 2 )

Частицы характеризуются и временем их жизни. По этому признаку частицы делятся на стабильные и нестабильные. Стабильные частицы - это электрон, протон, фотон и нейтрино. Нейтрон стабилен, когда находится в ядре атома, но свободный нейтрон распадается примерно за 15 минут. Все остальные известные частицы - нестабильны; время их жизни колеблется от нескольких микросекунд до 1 0 n сек (где n = - 2 3 ).

Большую роль в физике элементарных частиц играют законы сохранения, устанавливающие равенство между определенными комбинациями величин, характеризующих начальное и конечное состояние системы. Арсенал законов сохранения в квантовой физике больше, чем в классической. Он пополнился законами сохранения различных четностей (пространственной, зарядовой), зарядов (лептонного, барионного и др.), внутренних симметрий, свойственных тому или иному типу взаимодействия.

Выделение характеристик отдельных субатомных частиц - важный, но только начальный этап познания их мира. На следующем этапе нужно еще понять, какова роль каждой отдельной частицы, каковы ее функции в и структуре материи.

Физики выяснили, что прежде всего свойства частицы определяются ее способностью (или неспособностью) участвовать в сильном взаимодействии. Частицы, участвующие в сильном взаимодействии, образуют особый класс и называются адронами. Частицы, участвующие в слабом взаимодействии и не участвующие в сильном, называются лептонами. Кроме того, существуют частицы - переносчики взаимодействий.

Лептоны

Хотя лептоны могут иметь электрический заряд, а могут и не иметь, спин у всех у них равен Ѕ . Среди лептонов наиболее известен электрон. Электрон - это первая из открытых элементарных частиц. Как и все остальные лептоны, электрон, по-видимому, является элементарным (в собственном смысле этого слова) объектом. Насколько известно, электрон не состоит из каких-то других частиц.

Другой хорошо известный лептон - нейтрино. Нейтрино являются наиболее распространенными частицами по Вселенной. Вселенную можно представить безбрежным нейтринным морем, в котором изредка встречаются острова в виде атомов. Но несмотря на такую распространенность нейтрино, изучать их очень сложно. Как мы уже отмечали, нейтрино почти неуловимы. Не участвуя ни в сильном, ни в электромагнитном взаимодействиях, они проникают через вещество, как будто его вообще нет. Нейтрино - это некие "призраки физического мира".

Достаточно широко распространены в природе мюоны, на долю которых приходится значительная часть космического излучения. Во многих отношениях мюон напоминает электрон: имеет тот же заряд и спин, участвует в тех те взаимодействиях, но имеет большую массу и нестабилен. Примерно за две миллионные доли секунды мюон распадается на электрон и два нейтрино. В конце 70-х годов был обнаружен третий заряженный лептон, получивший название "тау - лептон". Это очень тяжелая частица. Ее масса около 3500 масс электрона. Но во всем остальном он ведет себя подобно электрону и мюону.

В 60-х годах список лептонов значительно расширился. Было установлено, что существует несколько типов нейтрино: электронное нейтрино, мюонное нейтрино и тау-нейтрино. Таким образом, общее число разновидностей нейтрино равно трем, а общее число лептонов - шести. Разумеется, у каждого лептона есть своя античастица; таким образом, общее число различных лептонов равно двенадцати. Нейтральные лептоны участвуют только в слабом взаимодействии; заряженные - в слабом и электромагнитном.

Адроны

Если лептонов существует чуть свыше десятка, то адронов сотни. Такое множество адронов наводит на мысль, что адроны не элементарные частицы, а построены из более мелких частиц. Все адроны встречаются в двух разновидностях - электрически заряженные и нейтральные. Среди адронов наиболее известны и широко распространены нейтрон и протон. Остальные адроны короткоживущие и быстро распадаются. Это класс т.н. барионов (тяжелые частицы гипероны) и большое семейство мезонов (мезонные резонансы).Адроны участвуют в сильном, слабом и электромагнитном взаимодействиях.

Существование и свойства большинства известных адронов были установлены в опытах на ускорителях. Открытие множества разнообразных адронов в 50-60-x годах крайне озадачило физиков. Но со временем адроны удалось классифицировать по массе, заряду и спину. Постепенно стала выстраиваться более или менее четкая картина. Появились конкретные идеи о том, как систематизировать хаос эмпирических данных, раскрыит тайну адронов в научной теории. Решающий шаг здесь был сделан в 1963 г., когда была предложена теория кварков.

Частицы - переносчики взаимодействий

Перечень известных частиц не исчерпывается перечисленными частицами - лептами и адронами - образующих строительный материал вещества. В этот перечень не включен, например фотон. Есть еще один тип частиц, которые не являются непосредственно строительным материалом материи, а обеспечивают четыре фундаментальных взаимодействия, т.е. образуют своего рода "клей", не позволяющий миру распадаться на части.

Переносчиком электромагнитного взаимодействия выступает фотон. Теория электромагнитного взаимодействия была представлена квантовой электродинамикой.

Переносчики сильного взаимодействия - глюоны. Глюоны - переносчики взаимодействия между кварками, связывающие их попарно или тройками.

Переносчики слабого взаимодействия три частицы - W ± и Z ° бозоны. Они были открыты лишь в 1983 г. Радиус слабого взаимодействия чрезвычайно мал, поэтому его переносчиками должны быть частицы с большими массами покоя. В соответствии с принципом неопределенности время жизни частиц с такой большой массой покоя должно быть чрезвычайно коротким - всего лишь около 10 n сек (где n = - 2 6 ). Радиус переносимого этими взаимодействия очень мал потому, что столь короткоживущие частицы не успевают отойти особенно далеко.

Высказывается мнение, что возможно существование и переносчика гравитационного поля - гравитона (в тех теориях гравитации, которые рассматривают ее не (только) как следствие искривления пространства-времени, а как поле). Спин гравитона равен 2. В принципе гравитоны можно зафиксировать в эксперименте. Но поскольку гравитационное взаимодействие очень слабое и в квантовых процессах практически не проявляется, то непосредственно зафиксировать гравитоны очень сложно.

Классификация частиц на лептоны, адроны и переносчики взаимодействий исчерпывает мир известных нам субатомных частиц. Каждый вид частиц играет свою роль в формировании структуры материи и Вселенной.

Теории элементарных частиц

Квантовая электродинамика (КЭД)

Квантовая механика позволяет описывать движение элементарных частиц, но не их порождение или уничтожение, т. е. применяется лишь для описания систем с неизменным числом частиц. Обобщением квантовой механики является квантовая теория поля - это квантовая теория систем с бесконечным числом степеней свободы (физических полей). Потребность в такой теории порождается квантово-волновым дуализмом, существованием волновых свойств у всех частиц. В квантовой теории поля взаимодействие представляют как результат обмена квантами поля.

В середине ХХ в. была создана теория электромагнитного взаимодействия - квантовая электродинамика КЭД - это продуманная до мельчайших деталей и оснащенная совершенным математическим аппаратом теория взаимодействия фотонов и электронов. В основе КЭД - описание электромагнитного взаимодействия с использованием понятия виртуальных фотонов - его переносчиков. Эта теория удовлетворяет основным принципам как квантовой теории, так и теории относительности.

В центре теории анализ актов испускания или поглощения одного фотона одной заряженной частицей, а также аннигиляции электронно-позитронной пары в фотон или порождение фотонами такой пары.

Если в классическом описании электроны представляются в виде твердого точечного шарика, то в КЭД окружающее электрона электромагнитное поле рассматривается как облако виртуальных фотонов, которое неотступно следует за электроном, окружая его квантами энергии. После того, как электрон испускает фотон, тот порождает (виртуальную) электрон-позитронную пору, которая может аннигилировать с образованием нового фотона. Последний может поглотиться исходным фотоном, но может породить новую пару и т.д. Таким образом электрон покрывается облаком виртуальных фотонов, электронов и позитронов, находящихся в состоянии динамического равновесия. Фотоны возникают и исчезают очень быстро, а электроны движутся в пространстве не по вполне определенным траекториям. Еще можно тем или иным способом определить начальную и конечную точки пути - до и после рассеяния, но сам путь в промежутке между началом и концом движения остается неопределенным.

Описание взаимодействия с помощью частицы-переносчика привело к расширению понятия фотона. Вводятся понятия реального (кванта видимого нами света) и виртуального (скоротечного, призрачного) фотона, который "видят" только заряженные частицы, претерпевающие рассеяние.

Чтобы проверить, согласуется ли теория с реальностью, физики сосредоточили внимание на двух эффектах, представлявших особый интерес. Первый касался энергетических уровней атома водорода - простейшего атома. Согласно КЭД, уровни должны быть слегка смещены относительно положения, которое они занимали бы в отсутствие виртуальных фотонов. Вторая решающая проверка КЭД касалась чрезвычайно малой поправки к собственному магнитному моменту электрона. Теоретические и экспериментальные результаты проверки КЭД совпадают с высочайшей точностью - более девяти знаков после запятой. Столь поразительное соответствие дает право считать КЭД наиболее совершенной из существующих естественно-научных теорий.

После подобного триумфа КЭД была принята как модель для квантового описания трех других фундаментальных взаимодействий. Разумеется, полям, связанным с другими взаимодействиями, должны соответствовать иные частицы-переносчики.

Теория кварков

Теория кварков - это теория строения адронов. Основная идея этой теории очень проста. Все адроны построены из более мелких частиц, называемых кварками. Значит, кварки - это более элементарные частицы, чем адроны. Кварки несут дробный электрический заряд: они обладают зарядом, величина которого составляет либо -1 / 3 или +2 / 3 фундаментальной единицы - заряда электрона. Комбинация из двух и трех кварков может иметь суммарный заряд, равный нулю или единице. Все кварки имеют спин Ѕ ,поэтому они относятся к фермионам. Основоположники теории кварков Гелл-Манн и Цвейг, чтобы учесть все известные в 60-е гг. адроны ввели три сорта (аромата) кварков: u (от up- верхний), d (от down- нижний) и s (от strange - странный).

Кварки могут соединяться друг с другом одним из двух возможных способов: либо тройками, либо парами кварк - антикварк. Из трех кварков состоят сравнительно тяжелые частицы - барионы, что означает "тяжелые частицы". Наиболее известны из барионов нейтрон и протон. Более легкие пары кварк - антикварк образуют частицы, получившие название мезоны - "промежуточные частицы". Например, протон состоит из двух u- и одного d-кварков (uud), а нейтрон - из двух d-кварков и одного u-кварка (udd).Чтобы это "трио" кварков не распадалось, необходима удерживающая их сила, некий "клей".

Оказалось, что результирующее взаимодействие между нейтронами и протонами в ядре представляет собой просто остаточный эффект более мощного взаимодействия между самими кварками. Это объяснило, почему сильное взаимодействие кажется столь сложным. Когда протон "прилипает" к нейтрону или другому протону, во взаимодействии участвуют шесть кварков, каждый из которых взаимодействует со всеми остальными. Значительная часть сил тратится на прочное склеивание трио кварков, а небольшая - на скрепление двух трио кварков друг с другом. (Но выяснилось, что кварки участвуют и в слабом взаимодействии. Слабое взаимодействие может изменять аромат кварка. Именно так происходит распад нейтрона. Один из d-кварков в нейтроне превращается в u-кварк, а избыток заряда уносит рождающийся одновременно электрон. Аналогичным образом, изменяя аромат, слабое взаимодействие приводит к распаду и других адронов.)

То обстоятельство, что из различных комбинаций трех основных частиц можно получить все известные адроны, стало триумфом теории кварков. Но в 70-е гг. были открыты новые адроны (пси-частицы, ипсилон-мезон и др.). Этим был нанесен удар первому варианту теории кварков, поскольку в ней уже не было места ни для одной новой частицы. Все возможные комбинации из кварков и их антикварков были уже исчерпаны.

Проблему удалось решить за счет введения трех новых ароматов. Они получили название

- charm (очарование), или с; b -кварк (от bottom - дно, а чаще beauty - красота, или прелесть); впоследствии был введен еще один аромат - t ( от top - верхний).

Кварки скрепляются между собой сильным взаимодействием. Переносчики сильного взаимодействия - глюоны (цветовые заряды). Область физики элементарных частиц, изучающая взаимодействие кварков и глюонов, носит название квантовой хромодинамики . Как квантовая электродинамика - теория электромагнитного взаимодействия, так квантовая хромодинамика - теория сильного взаимодействия.

Хотя и существует некоторая неудовлетворенность кварковой схемой, большинство физиков считает кварки подлинно элементарными частицами - точечными, неделимыми и не обладающими внутренней структурой. В этом отношении они напоминают лептоны, и уже давно предполагается, что между этими двумя различными, но сходными по своей структуре семействами должна существовать глубокая взаимосвязь.

Таким образом, наиболее вероятное число истинно элементарных частиц (не считая переносчиков фундаментальных взаимодействий) на конец ХХ века равно 48. Из них: лептонов (6х2) = 12 плюс кварков (6х3)х2 =36.

Теория электрослабого взаимодействия

В 70-е ХХ века в естествознании произошло выдающееся событие: два взаимодействия из четырех физики объединили в одно. Картина фундаментальных оснований природы несколько упростилась. Электромагнитное и слабое взаимодействия, казалось бы весьма разные по своей природе, в действительности оказались двумя разновидностями единого т.н. электрослабого взаимодействия. Теория электрослабого взаимодействия решающим образом повлияла на дальнейшее развитие физики элементарных частиц в конце ХХ в.

Главная идея в построении этой теории состояла в описании слабого взаимодействия на языке концепции калибровочного поля, в соответствии с которой ключом к пониманию природы взаимодействий служит симметрия. Одна из фундаментальных идей в физике второй половины ХХ в. - это убеждение, что все взаимодействия существуют лишь для того, чтобы поддерживать в природе некий набор абстрактных симметрий. Какое отношение имеет симметрия к фундаментальным взаимодействиям? На первый взгляд, само предположение о существовании подобной связи кажется парадоксальным и непонятным.

Прежде всего о том, что понимается под симметрией. Принято считать, что предмет обладает симметрией, если предмет остается неизменным в результате проведения той или иной операции по его преобразованию. Так, сфера симметрична, потому что выглядит одинаково при повороте на любой угол относительно ее центра. Законы электричества симметричны относительно замены положительных зарядов отрицательными и наоборот. Таким образом, под симметрией мы понимаем инвариантность относительно некой операции.

Существуют разные типы симметрий: геометрические, зеркальные, негеометрические. Среди негеометрических есть так называемые калибровочные симметрии. Калибровочные симметрии носят абстрактный характер и непосредственно не фиксируются. Они связаны с изменением отсчета уровня, масштаба или значения некоторой физической величины. Система обладает калибровочной симметрией, если ее природа остается неизменной при такого рода преобразовании. Так, например, в физике работа зависит от разности высот, а не от абсолютной высоты; напряжение - от разности потенциалов, а не от их абсолютных величин и др. Симметрии, на которых основан пересмотр понимания четырех фундаментальных взаимодействий, именно такого рода. Калибровочные преобразования могут быть глобальными и локальными. Калибровочные преобразования, изменяющиеся от точки к точке, известны под названием "локальных" калибровочных преобразований. В природе существует целый ряд локальных калибровочных симметрий и необходимо соответствующее число полей для компенсации этих калибровочных преобразований. Силовые поля можно рассматривать как средство, с помощью которого в природе создаются присущие ей локальные калибровочные симметрии. Значение концепции калибровочной симметрии заключается в том, что благодаря ей теоретически моделируются все четыре фундаментальных взаимодействия, встречающиеся в природе. Все их можно рассматривать как калибровочные поля.

Представляя слабое взаимодействие в виде калибровочного поля, физики исходят из того, что все частицы, участвующие в слабом взаимодействии, служат источниками поля нового типа - поля слабых сил. Слабо взаимодействующие частицы, такие, как электроны и нейтрино, являются носителями "слабого заряда", который аналогичен электрическому заряду и связывает эти частицы со слабым полем.

Для представления поля слабого взаимодействия как калибровочного прежде всего необходимо установить точную форму соответствующей калибровочной симметрии. Дело в том, что симметрия слабого взаимодействия гораздо сложнее электромагнитного. Ведь и сам механизм этого взаимодействия оказывается более сложным. Во-первых, при распаде нейтрона, например, в слабом взаимодействии участвуют частицы по крайней мере четырех различных типов (нейтрон, протон, электрон и нейтрино). Во-вторых, действие слабых сил приводит к изменению их природы (превращению одних частиц в другие за счет слабого взаимодействия). Напротив, электромагнитное взаимодействие не изменяет природы участвующих в нем частиц.

Это определяет то обстоятельство, что слабому взаимодействию соответствует более сложная калибровочная симметрия, связанная с изменением природы частиц. Выяснилось, что для поддержания симметрии здесь необходимы три новых силовых поля, в отличие от единственного электромагнитного поля. Было получено и квантовое описание этих трех полей: должны существовать три новых типа частиц - переносчиков взаимодействия, по одному для каждого поля. Все весте они называются тяжелыми векторными бозонами со спином 1 и являются переносчиками слабого взаимодействия.

Частицы W + и W - являются переносчиками двух из трех связанных со слабым взаимодействием полей. Третье поле соответствует электрически нейтральной частице-переносчику, получившей название Z -частицы. Существование Z -частицы означает, что слабое взаимодействие может не сопровождаться переносом электрического заряда.

В создании теории электрослабого взаимодействия ключевую роль сыграло понятие спонтанного нарушения симметрии: не всякое решение задачи обязано обладать всеми свойствами его исходного уровня. Так, частицы, совершенно разные при низких энергиях, при высоких энергиях могут оказаться на самом деле одной и той же частицей, но находящейся в разных состояниях. Опираясь на идею спонтанного нарушения симметрии, авторы теории электрослабого взаимодействия Вайнберг и Салам сумели решить великую теоретическую проблему - они совместили казалось бы несовместимые вещи (значительная масса переносчиков слабого взаимодействия, с одной стороны, и идею калибровочной инвариантности, которая предполагает дальнодействующий характер калибровочного поля, а значит нулевую массу покоя частиц-переносчиков, с другой) и таким образом соединили электромагнетизм и слабое взаимодействие в единой теории калибровочного поля.

В этой теории представлено всего четыре поля: электромагнитное поле и три поля, соответствующие слабым взаимодействиям. Кроме того, введено постоянное на всем пространстве скалярное поле (т. н. поля Хиггса), с которым частицы взаимодействуют по разному, что и определяет различие их масс. (Кванты скалярного поля представляют собой новые элементарные частицы с нулевым спином. Их называют хиггсовскими (по имени физика П.Хиггса, предположившего их существование). Число таких хиггсовских бозонов может достигать нескольких десятков. На опыте такие бозоны пока не обнаружены. Более того, ряд физиков считает их существование необязательным, но совершенной теоретической модели без хиггсовскмих бозонов пока не найдено) Первоначально W и Z -кванты не имеют массы, но нарушение симметрии приводит к тому, что некоторые частицы Хиггса сливаются с W и Z -частицами, наделяя их массой.

Различия свойств электромагнитного и слабого взаимодействий теория объясняет нарушением симметрии. Если бы симметрия не нарушалась, то оба взаимодействия были бы сравнимы по величине. Нарушение симметрии влечет за собой резкое уменьшение слабого взаимодействия. Можно сказать, что слабое взаимодействие имеет столь малую величину потому, что W и Z -частицы очень массивны. Лептоны редко сближаются на столь малые расстояния (r < 1 0 n см., где n = - 1 6 ). Но при больших энергиях (> 1 0 0 Гэв), когда частицы W и Z могут свободно рождаться, обмен W и Z бозонами осуществляется столь же легко, как и обмен фотонами (безмассовыми частицами). Разница между фотонами и бозонами стирается.В этих условиях должно существовать полная симметрия между электромагнитным и слабым взаимодействием - электрослабое взаимодействие.

Проверка новой теории заключалась в подтверждении существования гипотетических W и Z -частиц. Их открытие стало возможным только с созданием очень больших ускорителей новейшего типа. Открытие в 1983 г. W и Z -частиц означало торжество теории электрослабого взаимодействия. Не было больше нужды говорить о четырех фундаментальных взаимодействиях. Их осталось три.

Квантовая хромодинамика

Следующий шаг на пути Великого объединения фундаментальных взаимодействий - слияние сильного взаимодействия с электрослабым. Для этого необходимо придать черты калибровочного поля сильному взаимодействию и ввести обобщенное представление об изотопической симметрии. Сильное взаимодействие можно представлять как результат обмена глюонами, который обеспечивает связь кварков (попарно или тройками) в адроны.

Замысел здесь состоит в следующем. Каждый кварк обладает аналогом электрического заряда, служащим источником глюонного поля. Его назвали цветом (Разумеется, это название не имеет никакого отношения к обычному цвету). Если электромагнитное поле порождается зарядом только одного сорта, то для создания более сложного глюонного поля потребовалось три различных цветовых заряда. Каждый кварк "окрашен" в один из трех возможных цветов, которые совершенно произвольно были названы красным, зеленым и синим. И соответственно антикварки бывают антикрасные, антизеленые и антисиние.

На следующем этапе теория сильного взаимодействия развивается по той же схеме, что и теория слабого взаимодействия. Требование локальной калибровочной симметрии (т.е. инвариантности относительно изменений цвета в каждой точке пространства) приводит к необходимости введения компенсирующих силовых полей. Всего требуется восемь новых компенсирующих силовых полей. Частицами - переносчиками этих полей являются глюоны, и, таким образом, из теории следует, что должно быть целых восемь различных типов глюонов. (В то время как переносчик электромагнитного взаимодействия - всего лишь один (фотона), а переносчиков слабого взаимодействия - три.) Глюоны имеют нулевую массу покоя и спин 1. Глюоны также имеют различные цвета, но не чистые, а смешанные (например, сине-антизеленый). Поэтому, испускание или поглощение глюона сопровождается изменением цвета кварка ("игра цветов"). Так, например, красный кварк, теряя красно-антисиний глюон, превращается в синий кварк, а зеленый кварк, поглощая сине-антизеленый глюон, превращается в синий кварк. В протоне, например, три кварка постоянно обмениваются глюонами, изменяя свой цвет. Однако такие изменения носят не произвольный характер, а подчиняются жесткому правилу: в любой момент времени "суммарный" цвет трех кварков должен представлять собой белый свет, т.е. сумму "красный + зеленый + синий". Это распространяется и на мезоны, состоящие из пары кварк - антикварк. Поскольку антикварк характеризуется антицветом, такая комбинация заведомо бесцветна ("белая"), например красный кварк в комбинации с антикрасным кварком образует бесцветный мезон.

С точки зрения квантовой хромодинамики (квантовой теории цвета) сильное взаимодействие есть не что иное, как стремление поддерживать определенную абстрактную симметрию природы: сохранение белого цвета всех адронов при изменении цвета их составных частей. Квантовая хромодинамика великолепно объясняет правила, которым подчиняются все комбинации кварков, взаимодействие глюонов между собой (глюон может распадаться на два глюона или два глюона слить в один - поэтому и появляются нелинейные члены в уравнении глюонного поля), сложную структуру адрона, состоящего из "одетых" в облака кварков и др.

Возможно, пока преждевременно оценивать квантовую хромодинамику как окончательную и завершенную теорию сильного взаимодействия, тем не менее ее достижения многообещающи.

На пути к... Великому объединению

С созданием квантовой хромодинамики появилась надежда на создание единой теории всех (или хотя бы трех из четырех) фундаментальных взаимодействий. Модели единым образом описывающие хотя бы три из четырех фундаментальных взаимодействий, называются моделями Великого объединения. Теоретические схемы, в рамках которых объединяются все известные типы взаимодействий (сильное, слабое, электромагнитное и гравитационное) называются моделями супергравитации.

Опыт успешного объединения слабого и электромагнитного взаимодействий на основе идеи калибровочных полей подсказал возможные пути дальнейшего развития принципа единства физики, объединения фундаментальных физических взаимодействий. Один из них основан на том удивительном факте, что константы взаимодействия электромагнитного, слабого и сильного взаимодействий становятся равными друг другу при одной и той же энергии. Эту энергию называли энергией объединения. При энергии более 1 0 n ГэВ, где n = 1 4 или на расстояниях r < 1 0 n см, где n = - 2 9 , сильные и слабые взаимодействия описываются единой константой, т. е. имеют общую природу. Кварки и лептоны здесь практически не различимы.

В 70-90 -е годы было разработано несколько конкурирующих между собой теорий Великого объединения. Все они основаны на одной и той же идее. Если электрослабое и сильное взаимодействия в действительности представляют собой лишь две стороны великого единого взаимодействия, то последнему также должно соответствовать калибровочное поле с некоторой сложной симметрией. Она должна быть достаточно общей, способной охватить все калибровочные симметрии, содержащиеся и в квантовой хромодинамике и в теории электрослабого взаимодействия. Отыскание такой симметрии - главная задача на пути создания единой теории сильного и электрослабого взаимодействия. Существуют разные подходы, порождающие конкурирующих варианты теорий Великого объединения.

Тем не менее все эти гипотетические варианты Великого объединения имеют ряд общих особенностей.

Во - первых, во всех гипотезах кварки и лептоны - носители сильного и электрослабого взаимодействий - включаются в единую теоретическую схему. До сих пор они рассматривались как совершенно различные объекты.

Во - вторых, привлечение абстрактных калибровочных симметрий приводит к открытию новых типов полей, обладающих новыми свойствами, например способностью превращать кварки в лептоны. В простейшем варианте теории Великого объединения для превращения кварков в лептоны требуется двадцать четыре поля. Двенадцать из квантов эти полей уже известны: фотон, две W -частицы, Z -частица и восемь глюонов. Остальные двенадцать квантов - новые сверхтяжелые промежуточные бозоны, объединенные общим названием Х и У -частицы (с электрическим зарядом 1 / 3 и 4 / 3 ). Эти кванты соответствуют полям, поддерживающим более широкую калибровочную симметрию и перемешивающим кварки с лептонами. Следовательно, кванты этих полей (т.е. Х и У -частицы) могут превращать кварки в лептоны (и наоборот).

На основе теорий Великого объединения предсказаны по крайней мере две важных закономерности, которые могут и должны быть проверены экспериментально: нестабильность протона и существование магнитных монополей. Экспериментальное обнаружение распада протона и магнитных монополей могло бы стать веским доводом в пользу теорий Великого объединения. На проверку этих предсказаний направлены усилия экспериментаторов. Но пока еще твердо установленных экспериментальных данных на этот счет нет. Дело в том, что теории Великого объединения имеют дело с энергией частиц выше 1 0 n ГэВ, где n = 1 4 . Это очень высокая энергия. Трудно сказать, когда удастся получить частицы столь высоких энергий в ускорителях. Этим объясняется, в частности, трудность обнаружения Х и У- бозонов. И потому основной областью применения и проверки теорий Великого объединения является космология. Без этих теорий невозможно описать раннюю стадию эволюции Вселенной, когда температура первичной плазмы достигала 1 0 n К, где n = 2 7 . Именно в таких условиях могли рождаться и аннигилировать сверхт

Основные концепции времени

О трудности постижения времени

Итак, время традиционно понимают как "атрибут, всеобщую форму бытия

материи, выражающую длительность бытия и последовательность смены состояний

всех материальных систем и процессов в мире"[v]. Казалось бы: время – это

нечто столь очевидное, столь тесно связанное с повседневностью, ведь часы и

календарь – привычные "знаки" нашей жизни. И вместе с тем оно остается

почти непостижимой тайной. Интуитивное понимание времени и попытки выразить

это понимание порождают бездну нерешенных вопросов, приводят порой к

неразрешимым парадоксам.

"Что же такое время? Кто смог бы объяснить это просто и кратко? О чем,

однако, упоминаем мы в разговоре как о совсем привычном и знакомом, как не

о времени? И когда мы говорим о нем, мы, конечно понимаем, что это такое, и

когда о нем говорит кто-то другой, мы тоже понимаем его слова. Что же такое

время? Если никто меня об этом не спрашивает, я знаю, что такое время: если

бы я захотел объяснить спрашивающему – нет, не знаю"[vi], – писал Аврелий

Августин в "Исповеди".

Следует помнить и предостережение Эпикура: "Надобно твердо держаться

вот такого положения: время не поддается такому расследованию, как все

остальные свойства предметов…"[vii]. Об этом говорят и современные

философы: "Что же касается времени, то над ним человек, как и в древнейшие

времена, никакой власти не имеет… Время и многие его свойства представляют

для нас загадку не только в сферах, доступных лишь тонкому научному

исследованию, не только в области микро- и мегамира, но и на уровне нашего

обыденного опыта… У нас нет ни достаточных знаний о времени и его

свойствах, ни достаточного его понимания"[viii]. Таким образом, время –

один из самых сложных и противоречивых объектов, известных науке.

1.2. Модели времени в истории культуры

Рассмотрим проблему времени в аспекте субъективного отношения к нему

людей. Так как отношение и осознание его исторически изменчивы, проблема

времени предстает в качестве философской и историко-культурной проблемы.

Известно, что время в сознании людей первобытного общества выступает

не в виде нейтральной координаты, а в облике таинственной силы, управляющей

всеми вещами и жизнью людей. Поэтому оно эмоционально насыщено: время может

быть добрым и злым, благоприятным для одних видов деятельности и опасным

для других. Существует сакральное время, время празднества жертвоприношения

и т.д. Время в первобытном обществе – это не привычное и обычное для нас

векторное время: оно не течет линейно из прошлого в будущее, оно либо не

движется, либо вращается по кругу.

Античность считается колыбелью европейской цивилизации. Однако, как

считает А.Гуревич, ничто не раскрывает столь ясно глубокой

противоположности античной и новой культуры, как интерпретация ими

времени[ix]. Если в современном сознании господствует векторное время, то в

сознании эллина оно играло подчиненную роль. У греков временные восприятия

оставались под сильнейшим воздействием мифологического осмысления

действительности. Мир переживался ими не в категориях изменения и развития,

а как пребывание в покое или вращение в "великом кругу".

Римские историки гораздо более восприимчивы к линейному течению

времени, и ход истории они осмысливают уже не в мифопоэтических категориях,

а опираясь на определенные моменты действительной истории (основание Рима и

др.).

Восприятие времени как вращения по кругу, вечного возвращения было

присуще и европейским народам. Оно не было полностью изжито и в средние

века: сознание крестьянства не могло преодолеть влияния природных ритмов.

Но временная ориентация подверглась существенной трансформации под

воздействием христианства.

Во-первых, в христианском миросозерцании понятие времени было отделено

от понятия вечности. Вечность не измерима временными отрезками. Вечность –

атрибут бога, земное же время – это "тень вечности", "смена вещей". Оно

сотворено и имеет начало и конец, ограничивающие длительность человеческой

истории. Христианин стремится перейти из времени в вечность.

Во-вторых, историческое время приобретает определенную структуру,

разделяясь на две главные эпохи: до рождества Христова и после него.

История движется от акта божественного творения к Страшному суду. Время

становится векторным, линейным и необратимым.

Специфическая черта христианского понимания времени, восходящая к

Аврелию Августину, – психологизм. Время не столько мыслится как чистое

понятие, как абстрактная мера, сколько воспринимается в качестве

психологического факта, внутреннего опыта человеческой души.

На рубеже XIII и XIV веков европейцы получили средство точного

измерения времени, последовательного его отсчета через одинаковые

промежутки. В средневековом сознании "время купца" возобладало над

"временем церкви".

Механические часы, установленные на башнях соборов, прекратили

церковную "монополию" на время, отмерявшую его звоном колоколов. Впервые

время окончательно "вытянулось" в прямую линию, идущую из прошлого в

будущее через точку, называемую настоящим. Если ранее различия между

прошедшим, настоящим и будущим были относительными, а разделявшая их грань

– подвижной (в религиозном ритуале, например), то с торжеством линейного

времени эти различия сделались совершенно четкими.

Город стал хозяином собственного времени в том смысле, что оно вышло

из-под контроля церкви. Но человек перестает быть хозяином времени,

поскольку, получив возможность протекать независимо от людей и событий,

время устанавливает свою тиранию, которой люди вынуждены подчиняться. Все

эти трансформации привели к возникновению того понятия времени, которое

существует и поныне[x].

Статическая и динамическая концепции

Обратимся к одной стороне представлений о времени, выработанных

элейской школой. Историки философии полагают, что в них впервые заявила о

себе так называемая статическая концепция времени.

Она сводится к тому, что все моменты прошлого, настоящего и будущего

всегда существовали и всегда будут существовать. Это лишь иллюзия, что

моменты идут один за другим, как бусы на нитке и что если мгновение прошло,

оно прошло бесповоротно. Эту картину мира можно сравнить с кинолентой:

каждый кадр ее существует заранее, до того как увеличенным попадет на

экран; но зритель видит его именно в этот и только в этот момент.

Но если события действительно лишь находятся на извечно занятых ими

местах, мы же только пересекаем их, то непонятно, почему и как люди

приобретают иллюзию о существовании времени. Из статической концепции

времени изымается то, что в философии называют становлением, переходом

возможности в процессе развития.

Гегель в "Энциклопедии философских наук" само время отождествлял с

развитием, становлением: "… Не во времени все возникает и проходит, а само

время есть это становление, есть возникновение и прехождение…

всепорождающий и уничтожающий свои порождения Кронос"[xi]. Это неоднократно

подчеркивалось и в философии ХХ века: "Ответить на вопрос, что такое время,

– это то же, что ответить на вопрос, что такое изменение. Изменение, во

всяком случае, составляет корень или сущность времени…"[xii], – писал С.

Аскольдов.

В нашем сознании динамическая концепция времени явно господствует.

Каждый из нас исходит из того, что прошлого уже нет (хотя оно и скрыто в

возникшем на его основе настоящем), а будущего еще нет (хотя оно в

определенной степени в настоящем заложено).

Статическая и динамическая модели времени сосуществовали много веков.

Еще Платон совмещал обе концепции, полагая, что статическое время царит в

единственно реальном вечном "мире идей", время же динамическое – в "мире

вещей", где все "возникает и гибнет, но никогда не существует на самом

деле". Средневековые схоласты приписывали высшему бытию свойства

статической модели, к реальности же применяли динамическую концепцию.

Свои нерешенные проблемы есть и у статической и у динамической

концепций, но у каждой из них есть и сильные аргументы. Некоторые

современные философы полагают, что развитие обеих моделей может привести к

их синтезу.

Субстанциальная и реляционная концепции

Эти концепции рассматривают вопрос о природе времени, отношение

категорий времени и материи. Вспомним известное стихотворение Г.Державина,

написанное им в 1816г. за два дня до смерти:

Река времен в своем стремленьи

Уносит все дела людей

И топит в пропасти забвенья

Народы, царства и царей[xiii].

Оно заставляет задуматься не только о бренности человеческого

существования. "Река времен" уносит "дела людей", т.е. для Державина время

словно существовало само по себе, независимо от людских дел и событий. Оно

само есть действующая сила, самостоятельная и ни от чего не зависящая.

Это видение мира восходит к системе Исаака Ньютона. Английский физик в

своем труде "Математические начала натуральной философии" рисует мир,

состоящий из пространства и времени и движущихся по отношению к

пространству и времени материальных точек (из них образованы все

материальные тела). Пространство и время выступают здесь в роли огромной

"сцены", на которой "разыгрываются" явления. Даже если эти явления

исчезнут, "сцена" сохранится. Пространство и время представляют собой

независимые от материи сущности – субстанции (отсюда название концепции).

Ньютоновскому взгляду на время как на особую сущность противостояло

воззрение немецкого философа Лейбница. Согласно этой точке зрения, время не

отдельная самостоятельная сущность, а всего лишь производная. В нем для

Лейбница находят свое выражение определенные отношения вещей и явлений

между собой. От латинского relativus (относительный) данную концепцию

называют реляционной. О времени как особой сущности говорил еще Демокрит,

реляционная же модель разрабатывалась Аристотелем.

Как видим, концепции времени сильно разнятся, но они отражают одно и

то же реальное время. Однако на протяжении веков философия не может

окончательно исключить ни одну из четырех моделей, категорически признав ее

абсолютно неприемлемой.

Свойства времени

Объективность и субъективность

Рассматривая сущность времени и его основные свойства, прежде всего

следует выяснить, относится время к области объективного или же его уделом

является лишь сфера субъективного, определяется оно неким духовным началом

или же природой самого материального мира.

Для диалектического материализма убеждение в объективности

существующего мира является основой для материалистической трактовки

времени. В.И.Ленин писал: "Признавая существование объективной реальности,

т.е. движущейся материи, независимо от нашего сознания, материализм

неизбежно должен признавать также объективную реальность времени и

пространства"[xiv]. Время (как и пространство) существует объективно, т.е.

независимо от чьего-либо сознания.

Современная философия и психология кроме объективного реального

времени различают перцептуальное и концептуальное время. Под перцептуальным

временем понимают отражение реального времени в чувственном восприятии

субъекта. Тогда как концептуальное время – это наши знания, представления,

которые оказываются более или менее адекватным отображением реального

времени. Еще С.Аскольдов рассматривал время как онтологическое

("изменяемость бытия"), физическое ("раздробленное" и "измеренное время") и

психологическое (в котором есть "своя индивидуальность и субъективность и в

этом смысле относительность")[xv].

На всем протяжении развития философской мысли многими мыслителями

отрицалась объективность времени (или существование времени вообще). Так,

согласно теории И. Канта, время и пространство – формы нашей чувственности,

нашего рассудка, наша прирожденная способность приводить в порядок

расположение вещей и событий. В сфере независимо от человека существующих

вещей времени нет, оно имеется лишь в феноменальной сфере, в сфере того,

что Кант называл явлениями и что он относил к субъективной области. "Если

мы возьмем предметы так, как они могут существовать сами по себе, то время

есть ничто, – замечал немецкий философ. – Оно имеет объективную значимость

только в отношении явлений, потому что именно явления суть вещи, которые мы

принимаем за предметы наших чувств, но оно уже не объективно…"[xvi].

Первооткрывателем "внутреннего времени", или "дления", "длительности",

нашего сознания в начале ХХ века по праву является французский философ

А.Бергсон. В работах "Творческая эволюция" и "Длительность и

одновременность" он восстает против времени, понимаемого так, как оно

выступает в науке. Он называет время "спациализированным" (лат. spatium –

"пространство"), "опространственным", "замаскированным под время

пространством". Ему Бергсон противопоставляет свое "истинное время".

Оно связывается с длительностью, которая составляет сущность времени.

Чистая длительность понимается здесь как непрерывность внутреннего времени

человека. Субъект выступает фактически единственным носителем времени.

Время же внешнего мира создает "ощущаемая и переживаемая нами причастность

окружающего нас материального мира к этой внутренней длительности"[xvii].

Оригинальна концепция времени и в феноменологической философии.

Э.Гуссерль ставил перед собой задачу проанализировать время с

феноменологической точки зрения, т.е. дать анализ "времени – сознания", его

интересовало "имманентное время потока познания". Исключение объективного

времени играло решающую роль в его исследовании.

Во внутреннем времени не существует ни секунд, ни тысячелетий. Как

пишет В.Молчанов, "феноменологические данные времени, согласно Гуссерлю, –

это, с одной стороны, переживания, в которых проявляется временное в

объективном смысле, а с другой стороны, моменты переживаний, которые

устанавливают постижение времени как такового"[xviii].

Но если для Гуссерля поворот от объективного времени к временности

сознания дает возможность постичь сам поток сознания, то для М.Хайдеггера

это поворот от объективного времени к экзистенциальной временности.

Временность, по Хайдеггеру, всегда "наша", "мы сами" раскрываемся во

временности, и "в нас" благодаря временности раскрывается бытие[xix].

Общепризнанно, что именно экзистенциализм, полагая, что бытие – это

прежде всего существование человека, сделал категорию времени центральной.

Экзистенциалисты говорят о временности человеческого существования. "

Временность" – это переживание человеком времени, окрашенное в трагические,

эмоциональные тона, поскольку существование простирается между рождением и

смертью. Время у них носит конкретный, личностный характер, его нельзя

абстрагировать от таких экзистенциальных понятий, как "надежда",

"решимость", от чувства любви, ожидания, раскаяния и т.д. Восприятие

времени зависит от субъекта, от его настроенности. Поэтому экзистенциалисты

отличают обычное – физическое время, как чисто количественное, от

качественно отличного конечного и неповторимого времени, которое выступает

как судьба человека.

Это близко пониманию О.Шпенглера, который писал в "Закате Европы":

"Только исходя из мирочувствования тоскующего стремления и его прояснения в

идее судьбы, мы можем приступить к проблеме времени… Словом "время"

обозначается нечто в высшей степени личное, нечто такое, что мы вначале

упоминаем как собственное, поскольку оно ощущается с внутренней

достоверностью, как противоположность тому чужому, которое вмешивается в

жизнь... "Собственное", "судьба", "время" – суть заменяющие друг друга

вещи"[xx].

При такой трактовке время теряет свое привычное содержание, оно

перестает быть тем, что "течет", что "длится", а история перестает быть

последовательностью событий, происходящих во времени. История становится

сферой осуществления времен. Каждая культура, с такой точки зрения имеет

свою судьбу, свой миф, свое время. Время относится к области

непосредственного переживания и интуиции.

Однонаправленность и необратимость

В философии различают время обратимое и необратимое

(однонаправленное), первое иначе называется мифологическим, второе –

историческим. Согласно привычному нам восприятию, время всегда течет в

направлении от прошлого через настоящее к будущему так, что его инверсия не

возможна (в этом необратимость времени). События, происшедшие ранее,

безвозвратно остаются в прошлом, образно говоря, реку времени не повернуть

вспять. Согласно мифологическому восприятию, ход времени цикличен.

В современном сознании однонаправленность и необратимость кажутся

наиболее очевидными, сразу же бросающими в глаза свойствами времени. Но они

должны – в этом сходятся почти все ученые – иметь какое-то обоснование в

самой природе вещей, в том, как наш мир устроен.

Физики нередко склонны выводить необратимость времени из идущих в

нашей Галактике глобальных процессов, такие, как ее расширение.

Необратимость времени пытались объяснить и термодинамической и

электромагнитной "стрелами времени". Однако они, скорее, не причина, а

следствие необратимости времени. Все попытки дать теоретическое обоснование

природы и свойств нашего времени наталкиваются на серьезные трудности.

Абсолютность и относительность

Абсолютность времени, как и пространства, заключается в том, что

материальные объекты движутся не иначе, как в пространстве и времени[xxi]

(эта формулировка является в философии общепринятой, она не

противопоставляется положению, согласно которому, пространство и время –

атрибутивные свойства материи).

Время, как и пространство, относительно, потому что объектам

качественно различной природы присущи свои пространственно-временные

особенности. Такие особенности есть в микромире, где элементарные частицы

обладают корпускулярно-волновой природой и другими своеобразными свойствами

и в области живой материи, где приходится различать "биологические часы",

жизненные ритмы организма и т.д.

Например, для больного с повышенной температурой время кажется идущим

более медленно, так как в его организме метаболические процессы ускоряются.

Наоборот, пожилому человеку, у которого эти процессы замедляются, время

кажется протекающим быстрее. Свойство относительности свидетельствует о

необходимости пользоваться так называемым универсальным временем, общим

эталоном времени на планете.

Непрерывность и дискретность

Прерывность времени и пространства заключается в том, что материальные

объекты обладают относительной дискретностью своего существования. То есть

имеет место дифференциация тел. Вместе с тем совершаемое во времени и

пространстве движение является и непрерывным: оно не сводимо к сумме

дискретных моментов, обладает связностью, лишено каких бы то ни было

разрывов.

Итальянский художник и ученый Леонардо да Винчи, полтысячелетия назад

размышлявший над этой проблемой, указал что время относится к непрерывным и

прерывным величинам. Он приходит к выводу, что точка должна быть во времени

приравнена к мгновению, а любой промежуток времени – к линии. При этом,

замечает он, мгновения замыкают с обоих концов каждый промежуток времени,

как точки – каждую линию. И если линия делима до бесконечности, то точно

так же должен быть делим на любое, сколь угодно большое число частей любой

промежуток времени[xxii].

Бесконечность и безграничность

С проблемой непрерывности и прерывности времени тесно связан вопрос о

бесконечности движущейся материи во времени и пространстве. Окружающий мир

существовал всегда и обладает не только безграничностью, но и

бесконечностью.

Но бесконечность времени и конечное неразрывно связаны между собой,

бесконечное не реализуется помимо бренного. Бесконечное и конечное – это

различные уровни единого бытия. Причем, бесконечное и конечное наличествуют

в любом фрагменте реальности. Бесконечное не скрыто где-то в мега- или

микромире, хотя, конечно, есть и там. Бесконечное и конечное – повсюду.

Очевидно, что когда речь идет о бесконечности времени, то говорят не о

"дурной", по выражению Гегеля, бесконечности (как повторении одного и того

же). Бесконечность здесь – это неисчерпаемость.

Гипотеза «Большого взрыва» Вселенная довольно неоднородна: звезды собраны в галактики, а галактики в свою очередь образуют скопления. С течением времени Вселенная становится все более клочковатой по мере того, как гравитационная сила скоплений галактик притягивает галактики из соседних областей. В современных теориях образования галактик предполагается, что в прошлом Вселенная была гораздо более однородной, чем сейчас, и что все галактики и скопления галактик выросли из небольших флуктуаций, существовавших на фоне почти однородного распределения вещества. Следствия из этих теорий изучались очень подробно, но среди множества вопросов выделяется один фундаментальный: что это за флуктуации и откуда они появились?

Обратимся к космическим струнам - экзотическим невидимым образованиям, порожденным теориями элементарных частиц. Струны - это нити, оставшиеся от вещества только что родившейся Вселенной. Они невероятно плотные и подвижные: перемешаются со скоростью света и искривляют пространство вокруг себя. Появившиеся в первую секунду от начала расширения Вселенной, струны образуют запутанные клубки, при бесконечном растяжении которых возникают петли. Эти петли энергично колеблются и в процессе колебаний постепенно рассеивают свою энергию. Никто не может с уверенностью сказать, что струны есть, но если они существуют, то это, как полагают многие физики, могло бы объяснить клочковатость распределения вещества во Вселенной.

Поскольку Вселенная, согласно релятивистской теории струн, родилась из нулевой точки не менее 15 миллиардов лет назад в результате Большого взрыва, постольку она продолжает расширяться и в настоящее время: далекие галактики движутся от Земли с очень большими скоростями. Привлекая данные астрономических наблюдений и законы физики элементарных частиц, ученые могут восстановить историю Вселенной в прошлом вплоть до момента, когда возраст Вселенной составлял долю секунды от начала Большого взрыва. Тогда не существовало галактик, звезд и даже атомов. Вселенная представляла собой просто гигантский плотный горячий шар из таких частиц, как электроны и фотоны.

В соответствии с решениями Фридмана уравнений Эйнштейна 10-13 миллиардов лет назад (в начальный момент времени) радиус Вселенной был равен нулю. В нулевом объёме была сосредоточена вся энергия Вселенной, вся её масса. Плотность энергии была бесконечной, бесконечной была и плотность вещества. Подобное состояние называется сингулярным. Согласно концепции "Большого взрыва", Вселенная возникла из одной точки, радиусом равной нулю, но с плотностью равной бесконечности. Что это за точка, именуемая сингулярностью, каким образом из ничего появляется вся неисчерпаемая Вселенная и что находится за пределами сингулярности - об этом сторонники и пропагандисты данной гипотезы умалчивают. "Большой взрыв" произошел 10-20 миллиардов лет назад (точный возраст зависит от величины постоянной Хаббла, вводимой в соответствующую формулу). Эта величина, в свою очередь, может иметь различные значения в зависимости от методов, применяемых для измерения расстояния от Земли до галактик.

В целом же трезвый подход к теории "Большого взрыва" хорошо выразил известный шведский физик и астрофизик, лауреат Нобелевской премии Х. Альвен. Отнеся данную гипотезу к разряду математических мифов и отмечая возрастание фанатичной веры в него, он пишет: "...Эта космологическая теория представляет собой верх абсурда - она утверждает, что вся Вселенная возникла в некий определенный момент подобно взорвавшейся атомной бомбе, имеющей размеры (более или менее) с булавочную головку. Похоже на то, что в теперешней интеллектуальной атмосфере огромным преимуществом космологии "Большого взрыва" служит то, что она является оскорблением здравого смысла: credo, quia absurdum ("верую, ибо это абсурдно")! Когда ученые сражаются против астрологических бессмыслиц вне стен "храмов науки", неплохо было бы припомнить, что в самих этих стенах подчас культивируется еще худшая бессмыслица".

В рамках теории "Большого взрыва" отрицается вечность и бесконечность Вселенной, так как Вселенная имела начало во времени и по прошествии даже максимального срока в 20 миллиардов лет успела расшириться (раздуться) на ограниченное расстояние. Что находится за пределами радиуса расширяющейся Вселенной - тоже запретная тема для обсуждения. Обычно отделываются ничего не объясняющими утверждениями, смысл которых примерно следующий: Вселенная такова, потому что это вытекает из математических формул.

Впервые релятивистская идея расширяющейся Вселенной была сформулирована и математически обоснована российским ученым А.А. Фридманом в двадцатые годы. Его ученик Дж. Гамов рассчитал в конце сороковых годов модель горячей взрывающейся Вселенной, положив начало концепции "Большого взрыва". Но широкое распространение и внедрение эта теория получила лишь с середины 1960-х годов. В 1965 году Хокинг познакомился с теорией Пенроуза и решил распространить ее на всю Вселенную, изменив при этом направление времени на обратное так, чтобы сжатие перешло в расширение. Другими словами, в математических уравнениях был заменен знак, что позволило ввести новую модель Большого Космоса, совмещенного с "Большим взрывом", точкой отсчета которого стала сингулярность. Спустя пять лет Хокинг опубликовал на эту тему работу уже совместно с Пенроузом**. Вот, собственно, и вся подоплека господствующей в настоящее время модели Вселенной, которая в дальнейшем уточнялась в деталях, но не в принципе.

Показательно, что теория целиком и полностью родилась "на кончике пера" и соткана из тончайшей математической паутины. Ее возможное соответствие космической реальности целиком и полностью зиждется на энтузиазме и активности авторов, поддерживающих друг друга и поддерживаемых не менее дружно всеми возможными информационными средствами. В действительности ничего, кроме искусной комбинации математических отношений, существующих в двух вариантах - либо в голове теоретика, либо в письменном или напечатанном виде, авторы идеи «Большого взрыва» предложить не могут.

Гипотеза "фридмонов" М.А. Маркова. Итак, модель "Большого взрыва" - всего лишь одна из возможных воображаемых конструкций, плод игры теоретической мысли. Воистину прав был Максимилиан Волошин, который, точно предвидя грядущий теоретический "беспредел", писал:

Подтверждением тому может служить гипотеза "фридмонов" М.А. Маркова. Согласно этой гипотезе, "Вселенная в целом может оказаться микроскопической частицей. Микроскопическая частица может содержать в себе целую Вселенную"**. Подобные микроскопические объекты, "внутри" которых могут находиться звездные системы, галактики, цивилизации, получили название "фридмонов" (в честь А.А.Фридмана). Выдвигаемые положения наглядно иллюстрируются с помощью знаменитого "демона Максвелла" - гипотетического существа, способного оказаться в любой невероятной ситуации и описать ее. Вот что увидел бы такой "демон" при полете через Вселенную, представляющую собой "фридмон". Двигаясь от центра нашей Вселенной, "максвелловский демон", пройдя ультрамакроскопические расстояния между галактиками, в конце концов оказался бы в некоторой области, где наш мир с помощью микроскопической горловиной сферы связан с другим, "внешним" по отношению к нашему, пространством. Но если бы любознательный "демон" протиснулся сквозь горловину за пределы "фридмона" и взглянул со стороны на нашу Вселенную, то с удивлением обнаружил бы, что извне она представляется микроскопическим объектом.

Вывод о макро-микроскопической Вселенной базируется на строгом и оригинальном математическом расчете. Но значит ли это, что предлагаемое решение и является абсолютной "формулой мира", раскрывающей самые что ни на есть фундаментальные закономерности движущейся материи? Ничуть. Упомянутая формула является одной из бесчисленного множества возможных и столь же равноправных моделей и формул, каждая из которых будет описывать вполне определенную (новую в каждом отдельном случае) совокупность объективных природных отношений

Реликтовое излучение. В 60-е годы нынешнего столетия было обнаружено микроволновое фоновое излучение, равномерно заполняющее все космическое пространство. Оно представляет собой радиоволны миллиметрового диапазона, распространяющиеся по всем направлениям. Таинственное явление было открыто американскими радиоастрономами Арно Пензиасом и Робертом Вильсоном, за что оба были удостоены Нобелевской премии. "Фотонный газ" равномерно заполняет всю Вселенную. Его температура близка к абсолютному нулю - около 3К. Зато энергия, сосредоточенная в нем, - превышает световую энергию всех звезд и галактик, вместе взятых, за все время их существования. Новооткрытое явление немедленно было истолковано как температурно-ослабленное излучение, образовавшееся вместе со всей Вселенной в результате Большого взрыва 10-20 миллиардов лет тому назад. За истекшее время эти, по-другому называемые еще "реликтовыми", фотоны якобы успели остыть до температуры около трех градусов по шкале Кельвина. "Нормальными" и "ослабленными" световыми квантами наполнено все космическое пространство: на каждый протон приходится несколько десятков миллионов фотонов. Так что же представляет собой это загадочное "реликтовое" излучение? И можно ли говорить о "реликтовых" фотонах? Здесь особого внимания заслуживает мнение известного специалиста в области космической проблематики профессора Василия Петровича Селезнева, действительного члена Академии космонавтики им. К.Э. Циолковского, руководителя секции общей физики Московского общества испытателей природы.

Существование фонового излучения, равномерно заполняющего все космическое пространство, - считает академик, - является экспериментально установленным фактом. Объяснить физическую природу такого излучения оказалось весьма трудно. Интуиция некоторых исследователей не без основания направила на поиски причин в малоизученную область знания - космологию, связанную с происхождением всей нашей Вселенной. Однако в этом поиске почему-то возобладал односторонний подход: во внимание берется только одна предполагаемая причина возникновения "реликтового" излучения (так называемый "Большой взрыв") и не рассматриваются другие альтернативные решения. Вполне естественно, сам по себе "Большой взрыв", воспроизводящий якобы механизм зарождения Вселенной из точки нулевого объема (то есть из "ничего"), не выдерживает никакой критики. Поэтому его нельзя считать действительной причиной фонового излучения. Более обоснованно зарождение и распространение фонового излучения можно объяснить, рассматривая модель вращающейся Вселенной.

Накопленный человечеством научный и практический опыт в области земной и небесной механики показывает, что движения планет относительно Солнца, самого Солнца относительно Галактики, множества звездных систем и галактик относительно друг друга, осуществляются под действием двух видов сил - сил гравитационного притяжения тел (сил всемирного тяготения), и сил инерции масс этих тел.

Если бы силы инерции отсутствовали, то все небесные тела под действием всемирного тяготения слились бы в единое "тело". Однако, как известно из повседневного опыта, Луна не падает на Землю, Земля не падает на Солнце и т. д., а все они движутся относительно друг друга по различным орбитам, сохраняя в любой момент времени условие динамического равновесия сил гравитационного притяжения и сил инерции. Этот всеобщий для всей Вселенной закон механики приводит к тому, что галактики вращаются не только вокруг своих центров масс, но и относительно друг друга, а следовательно, вращается и вся Метагалактика. Подобное вращение звездного неба с угловой скоростью порядка 10-5 угловой секунды в год наблюдается экспериментально. Где бы ни находился наблюдатель в пределах Метагалактики, он мог бы обнаружить такое вращение звездного неба экспериментальным путем. Таким образом, и земной житель тоже является участником вращения Метагалактики.

Что же он увидит, рассматривая излучение далеких звезд и галактик? Представим пространство за пределами Метагалактики, содержащее огромное множество звезд и галактик, связанных между собой силами всемирного тяготения. Это пространство вращается как единое целое, наподобие огромного дискообразного тела, благодаря чему силы всемирного тяготения уравновешиваются силами инерции небесных тел (центробежные силы), не давая возможности этим телам слиться в одно общее тело. В какой-то произвольной части этого пространства находится наблюдатель (точка А), а на расстоянии R от него - небесное тело В, излучающее во все стороны потоки света.

Вследствие вращения Метагалактики с угловой скоростью w линия АВ также вращается с той же угловой скоростью. Окружная скорость V точки В относительно точки А будет равна V=wR, а направление вектора будет перпендикулярно линии АВ. Если небесное тело излучает свет во все стороны со скоростью света С, то в направлении наблюдателя скорость потока фотонов должна складываться. Следовательно, скорость светового потока С1 будет меньше скорости излучения С, что вызовет доплеровский эффект, сопровождаемый красным смещением в спектре света, воспринимаемого наблюдателем. В рассматриваемом примере расстояние АВ не меняется, а причиной наблюдаемого красного смещения выступает вращение Метагалактики. Чем больше R, тем значительнее возрастает поперечная составляющая скорости V (при постоянной величине угловой скорости w). Можно представить себе и предельное значение R, при котором скорость V будет достигать величины скорости света С. В этом случае С1=0, и свет, излучаемый небесным телом, не будет достигать наблюдателя. По существу, из этого условия может быть найдена граница видимой части Метагалактики, далее которой наблюдатель не сможет увидеть небесные тела, поскольку свет от них не доходит до него. Учитывая значение w=10-4 угловой секунды в год и V=С, получим предельное расстояние R=Rпред до границ видимой части Метагалактики порядка 1,8Ч1028 см (около 19 миллиардов световых лет). В данной связи разрешается и так называемый фотометрический парадокс, согласно которому ночное небо в случае бесконечного числа звезд должно выглядеть как раскаленное Солнце. В действительности согласно рассмотренной модели в пределах видимой части Метагалактики наблюдается ограниченное число звезд и галактик, вследствие чего ночное небо слабо освещено.

В рассмотренной модели вращающейся Вселенной существуют периферийные области, близкие к границам видимой части Метагалактики, в которых свет от небесных тел доходит до наблюдателя с весьма малой скоростью. Характеристики подобных световых потоков, идущих со всех сторон от периферийных областей Метагалактики, полностью соответствуют "реликтовым" излучениям, обнаруженным в космическом пространстве. Таким образом, для выяснения природы излучения достаточно рассмотреть особенности распространения света в Метагалактике, основываясь на известных законах небесной механики*.

Профессор Селезнев, несомненно, прав. Остается сделать общий вывод. При решении актуальных проблем современной науки надо целостно, с философско-космических позиций осмысливать саму сущность объективных закономерностей, выражающихся в неразрывном единстве макро- и микрокосмических аспектов природной и социальной действительности. В общем это совпадает с основными направлениями развития современного естествознания.

Антропный принцип

Существование жизни во Вселенной каким-то образом взаимосвязано с фундаментальными физическими законами, описывающими устройство и поведение Вселенной.

XVI в. Принцип Коперника

1950 Парадокс Ферми

1961 Антропный принцип

1961 Формула Дрейка

По мере накопления нами знаний о космосе возрастал объем имеющейся у нас информации об устройстве и макромира, и микромира. И становилось все очевиднее, что, сложись хоть что-то в процессе возникновения и эволюции Вселенной хотя бы незначительно иначе, чем оно было, нас бы с вами попросту не было, и некому было бы размышлять о порядке мироустройства. То есть, все выглядит так, будто Вселенная действительно была изначально задумана как своего рода Эдем — райский сад, где все благоприятствовало зарождению человечества, — и замысел этот поражает грандиозностью своего масштаба.

Окажись чуть интенсивнее силы взаимного гравитационного притяжения материальных тел — и расширение Вселенной (см. Большой взрыв) прекратилось бы, практически не успев начаться, — мир буквально сжался бы обратно в бесструктурную массу, не успев по-настоящему родиться; по крайней мере, до формирования звезд с планетными системами, не говоря уже о зарождении ни них жизни, дело бы дойти не успело. Если бы, напротив, сила тяжести оказалась несколько ниже наблюдаемой, вещество Вселенной попросту распылилось бы, не успев и не сумев локализоваться в звездно-планетарные системы. Из всех возможных значений константы гравитационного протяжения лишь мизерный интервал ее значений приводит к формированию устойчивой и жизнеспособной Вселенной.

И то же самое можно сказать практически о любой фундаментальной константе, определяющей физические свойства наблюдаемого нами материального мира. Случись, например, единичному электрическому заряду элементарных частиц оказаться чуть выше наблюдаемой величины, и сила взаимного электростатического отталкивания положительно заряженных протонов не дала бы сложиться ядрам наблюдаемых нами сегодня химических элементов, из которых сложена Вселенная. Окажись же единичный электрический заряд чуть ниже, электроны не смогли бы закрепиться на орбитах вокруг ядра. И в том, и в другом случае до зарождения жизни во Вселенной (и до появления нас с вами) дело бы никак не дошло. Или, если бы сильные взаимодействия внутри ядра, удерживающие вместе нуклоны (протоны и нейтроны) оказались слабее, чем они есть, нестабильными оказались бы подавляющее большинство стабильных ядер базовых химических элементов, образовавшихся вскоре после Большого взрыва, из которых и сформировалась та Вселенная, которую мы сегодня наблюдаем. А, окажись они сильнее чем есть, стали бы невозможными термоядерные реакции, дающие энергию звездам и обеспечивающие «энергоснабжение» планет.

На самом деле, все фундаментальные константы, взятые по совокупности, имеют очень узкий интервал допустимых значений, при которых Вселенная в том виде, в котором она перед нами предстает и обеспечивает условия для зарождения жизни, могла возникнуть и стабильно развиваться. Первым эту мысль озвучил американский астрофизик Роберт Дик (Robert H. Dicke, 1916–1997), а окончательно сформулировал в 1973 году также американец Брэндон Картер (Brandon Carter, р. 1942) — этот космолог усмотрел в антропном принципе расширение задолго до него сформулированного принципа Коперника. Согласно Картеру мы имеем два формально раздельных космологических вселенских антропных принципа — слабый и сильный.

Слабый антропный принцип просто утверждает, что устройство Вселенной допускает зарождение в ней биологической жизни. То есть, вопрос «почему Вселенная устроена именно так, как она устроена?» заменяется вопросом «Почему Вселенная устроена так, что в ней возникли разумные существа, задающиеся вопросом о причинах наблюдаемого устройства Вселенной?» То есть, сам факт возникновения вопроса относительно природы фундаментальных сил и законов уже подразумевает, что во Вселенной развились разумные формы жизни. Если бы, условно говоря, константы (такие, как постоянная всемирного тяготения) отличались от наблюдаемых, Вселенная эволюционировала бы по-иному, жизнь в ней попросту могла бы и не развиться, в результате чего вопросов о первопричинах возникновения Вселенной не возникло бы, как таковых.

В этой формулировке антропный принцип не подразумевает каких бы то ни было первопричин, по которым Вселенная сформировалась именно так, как она это сделала, и по которым фундаментальные природные константы таковы, как они есть. Допускается (теоретически) существование буквально бесчисленного множества других вселенных с другими наборами фундаментальных констант (см. вставку), но само возникновение форм разумной жизни возможно лишь во вселенных, подобных нашей, — то есть, достаточно устойчивых, чтобы в них успели развиться разумные формы жизни.

Вот, к примеру, аналогия: если десять раз подряд подбросить монету, вероятность того, что десять раз подряд выпадет орел, составит (1/2)10 = 1/1024. То есть из 1024 серий по бросанию монеты 10 раз подряд вы, в среднем, лишь единожды добьетесь результата, при котором монета все десять раз подряд упадет одной стороной кверху. Это строгое следствие теории вероятностей, но, после того, как монета десять раз подряд выпала орлом, смысла задаваться вопросом, почему так случилось, нет и быть не может. Можно сколько угодно отслеживать и описывать траекторию хаотичного движения монеты в полете — никакой закономерности в выпадении орла или решки нет. В точности также из бесчисленного множества вероятных вселенных лишь у немногих есть шанс на то, что набор фундаментальных констант сложится в них благоприятным (с точки зрения их дальнейшего устойчивого развития) образом, — остальные же обречены на практически мгновенное сжатие до состояния протоматерии или распыление без образования устойчивых структур. И только в этих устойчивых вселенных может зародиться разумная жизнь, задающаяся вопросом о причинах своего происхождения.

Однако и этого некоторым ученым показалось мало для объяснения наблюдаемой пригодности нашей Вселенной для жизни, в результате чего был сформулирован сильный антропный принцип: Вселенная обязана быть устроена так, чтобы в ней могла зародиться разумная жизнь. В этой его версии принцип выходит за рамки слабого антропного принципа и утверждает, что зарождение жизни во Вселенной не только возможно (слабый принцип), но и фактически неизбежно. Сторонники этого взгляда на вещи обосновывают свою точку зрения тем, что имеется некий универсальный (и до сих пор не открытый) закон, согласно которому все фундаментальные вселенские константы попросту не могут отличаться от тех, которые мы имеем в объективной реальности. Крайняя точка зрения в этой космогонической традиции доходит до того, что не только универсальные константы предопределены, но и развитие сознающего разума во Вселенной неизбежно.

Что касается ученых-естествоиспытателей, то большинство из них безоговорочно признают антропный принцип в его «слабой» формулировке, поскольку здесь он является не более, чем обычным упражнением в логике (кто-то, возможно, даже сочтет его тавтологией: «мы живы, потому что живы и сознаем этот факт»). Сильный же антропный принцип широкого признания так и не получил по причине практической невозможности его проверки. Что касается лично меня, то по обоим вышеупомянутым вопросам я, вынужденно или невольно, разделяю мнение большинства.

Горизонт Вселенских событий

Наш мир, родившийся в процессе Большого взрыва, и поныне расширяется, а объем разделяющего галактики пространства стремительно увеличивается. Скопления галактик, удаляясь друг от друга, тем не менее остаются устойчивыми образованиями с определенными размерами и стабильной структурой. Да и атомы вовсе не набухают в процессе расширения Вселенной, в отличие от свободно летающих фотонов, увеличивающих свою длину волны в процессе перемещения по расширяющемуся пространству. Куда же ушла энергия реликтовых фотонов? Почему мы можем видеть квазары, удаляющиеся от нас со сверхсветовой скоростью? Что такое темная энергия? Почему доступная нам часть Вселенной все время сокращается? Это лишь часть вопросов, над которыми думают сегодня космологи, стараясь согласовать общую теорию относительности с картиной Мира, наблюдаемой астрономами.

Почти сто лет назад американский астроном Весто Слайфер (Vesto Slipher, 1875-1969) обнаружил, что линии в спектрах излучения большинства галактик смещены в красную сторону. В то время космологических теорий, которые могли бы объяснить этот феномен, еще не было, равно как не существовало и общей теории относительности (ОТО). Слайфер истолковал свои наблюдения, опираясь на эффект Доплера. Получилось, что галактики удаляются от нас, причем с довольно большими скоростями. Позже Эдвин Хаббл (Еdwin НuЬblе, 1889-1953)

Наш мир, родившийся в процессе Большого взрыва, и поныне расширяется, а объем разделяющего галактики пространства стремительно увеличивается. Скопления галактик, удаляясь друг от друга, тем не менее остаются устойчивыми образованиями.

Горизонт Вселенских событий

Этот "квартет" галактик был открыт в 1877 году, а в 1970-м, исследуя красное смещение, обнаружили, что только три более красные галактики образуют единую группу, а голубая - находится много ближе обнаружил, что чем дальше галактика находится от нас, тем

Наш мир, родившийся в процессе Большого взрыва, и поныне расширяется, а объем разделяющего галактики пространства стремительно увеличивается. Скопления галактик, удаляясь друг от друга, тем не менее остаются устойчивыми образованиями.

Горизонт Вселенских событий

Этот "квартет" галактик был открыт в 1877 году, а в 1970-м, исследуя красное смещение, обнаружили, что только три более красные галактики образуют единую группу, а голубая - находится много ближебольше наблюдаемый сдвиг спектральных линий в красную сторону (то есть красное смещение) и, следовательно, с тем большей скоростью она улетает от Земли. Сейчас данные по красному смещению получены для десятков тысяч галактик, и почти все они удаляются от нас. Именно это открытие и позволило ученым заговорить о расширении Вселенной и о нестационарности нашего мира.

Альберт Эйнштейн в поиске решений своих знаменитых уравнений, описывающих сосуществование энергии и гравитации (то есть материи и кривизны четырехмерного пространства - времени), пренебрег фактом расширения и представил миру в первых публикациях по ОТО стационарную, бесконечную и неизменную Вселенную. Более того, когда российский математик и геофизик А. А. Фридман (1888-1925) нашел «расширяющиеся» и «пульсирующие» решения для уравнений, Эйнштейн долго не признавал такой сценарий развития Вселенной и правомочность найденных решений. Однако дальнейшие математические исследования уравнений, которые называются системой уравнений Гильберта - Эйнштейна и описывают весь мир в целом, показали, что Александр Фридман прав и Вселенная совсем не обязана быть бесконечной и стационарной.

Теория и эксперимент стали соответствовать друг другу, а заодно выяснилось, что удаляющиеся галактики не движутся, подобно тому, как мы ходим по комнате или как Луна вращается вокруг Земли, а удаляются от нас из-за расширения самого пространства. Обычно это иллюстрируют с помощью растягивающейся резиновой пленки или воздушного шарика. Здесь, впрочем, тоже есть некий нюанс, который часто сбивает многих с толку. Если нарисовать галактику на шарике и начать его надувать, то ее изображение тоже будет увеличиваться. При расширении Вселенной такого не происходит. Галактика - это гравитационно - связанная система, она не участвует в космологическом расширении. Так что в иллюстрации с шариком галактику лучше не рисовать на нем, а приклеить «ее» к шарику в одной точке. Но поскольку на самом деле галактики ни к чему не приклеены и могут двигаться в пространстве, то еще лучше представлять их как капли воды на поверхности раздувающегося шарика. Капли - галактики в этом случае не расширяются, но могут свободно перемещаться по нему с некоторой собственной скоростью.

Для более наглядного представления процесса расширения удобно ввести систему отсчета, нарисовав на шаре координатную сетку. Если бы галактики были «приклеены» к такому раздувающемуся шарику - пространству, то их координаты не изменялись бы, и расширение сводилось бы лишь к модификации свойств самой системы координат. Однако реальное расстояние между галактиками, измеряемое, например, с помощью линейки, света или радиолокатора, при этом все же увеличивается, поскольку размер линейки не изменяется при космологическом расширении, а скорость света и радиоволн не зависит от того, насколько растянулась пленка пространства - шарика. В этом плане наше пространство совсем не похоже на резиновую пленку, утончающуюся при растяжении и заставляющую упругие волны бегать по ней с возрастающей скоростью.

Согласно ОТО пространство расширяется, рождаясь как бы из ничего, в силу тех законов, которым оно подчиняется. Именно этот процесс, с учетом свойств всего того, что находится в пространстве, и описывают уравнения Гильберта - Эйнштейна. Поведение света, атомов, молекул, твердых тел, жидкостей и газов слабо зависит от локальной кривизны пространства - времени и существенно изменяется только в особо сильных гравитационных полях, наподобие тех, что встречаются вблизи черных дыр. В большей же части Вселенной, как полагают ученые, основные процессы происходят почти так же, как и на 3емле, и получается, что галактики вполне реально удаляются друг от друга из-за расширения пространства, в котором они находятся. Космические корабли движутся, а свет распространяется по тому пространству, которое есть, и если его станет больше, это будет заметно, хотя бы по тому времени, которое им придется затратить, путешествуя из одной галактики в другую.

ПРОБЛЕМА БЕСКОНЕЧНОСТИ ВСЕЛЕННОЙ: КОСМИЧЕСКАЯ ФИЛОСОФИЯ И СОВРЕМЕННАЯ КОСМОЛОГИЯ

1. Конечное и бесконечное - важнейшие универсалии мировой культуры. Противоречивое взаимодействие этих универсалий в философии, религии, искусстве, науке и других сферах культуры во многом предопределило духовную атмосферу XX века (проблема бесконечности в математике, дискуссии о конечности и бесконечности в космологии, проблема человека как существа, "пограничного" между конечным и бесконечным в антропологии, проблема бесконечного смыслового континуума в аналитической психологии и др.). Разные смыслы понятия бесконечности наполняют и космическую философию К.Э.Циолковского.

Отношение к понятию бесконечности неоднозначно. Проявляется стремление "изгнать" его из науки (потому, например, что в ряде случаев его появление в физической теории свидетельствует о ее неблагополучии и т.п.). Но подобные попытки всякий раз заканчивались триумфальным возвращением понятия бесконечности в ту или иную сферу научного познания, включая и современную космологию. Видимо, на уровне оснований науки бесконечность не только не устранима, но и постоянно расширяет пределы научного познания, играя, тем самым, выдающуюся эвристическую роль в научном поиске.

2. Понятие бесконечности в космической философии К.Э.Циолковского использовалось в разных смыслах (например, бесконечное множество космосов, бесконечная протяженность пространства и времени, бесконечная структурная иерархия космических систем, бесконечная последовательность ритмов космической эволюции, бесконечность пределов могущества космического разума и др. Некоторые из этих смыслов понятия бесконечности вызывают отклик в современной науке.

3. Долгое время вопрос о том, что было "до" начала расширения Вселенной, считался бессмысленным, так как время, по Августину, возникло вместе со Вселенной (эту мысль еще недавно решительно отстаивали многие современные космологи). Но сейчас ситуация изменилась. И.Пригожин показал, что в рамках современной теории самоорганизации вопрос о происхождении времени чрезвычайно сложен, причем "мысль о том, что время не имеет начала - о том, что время предшествует существованию нашей Вселенной - становится все более правдоподобной" (Пригожин И. Конец определенности. Ижевск, 1999. С. 158).

Происхождение и эволюция галактик и звезд

Небесные тела находятся в непрерывном движении и изменении. Десятки тысяч лет назад небо Земли украшали фигуры других созвездий, миллиарды лет назад вообще еще не было Земли, Луны, планет, Солнца, многих звезд и галактик. Когда и как именно они произошли, наука стремится выяснить, изучая небесные тела и их системы. Раздел астрономии, занимающийся проблемами происхождения и эволюции небесных тел, называется космогонией.

Современные научные космогонические гипотезы – результат физического, математического и философского обобщения многочисленных наблюдательных данных. В космогонических гипотезах в значительной мере находит свое отражение общий уровень развития естествознания. Дальнейшее развитие науки, обязательно включающее в себя астрономические наблюдения, подтверждает или опровергает эти гипотезы. Подтверждаются те гипотезы, которые не только могут объяснить известные из наблюдений факты, но и предсказать новые открытия.

Звезды возникали в ходе эволюции галактик. Большинство астрономов считают, что это происходило в результате сгущения (конденсации) облаков диффузной материи, которые постепенно формировались внутри галактик. Одна из исходных предпосылок такой гипотезы состоит в том, что, как показывают наблюдения, “молодые” звезды всегда тесно связаны с газом и пылью. Эти звезды и диффузная материя концентрируются в спиральных ветвях галактик. Местами наиболее интенсивного звездообразования считаются массы холодного межзвездного вещества, которые называются газово-пылевыми комплексами. Наиболее изученный газово-пылевой комплекс нашей Галактики находится в созвездии Ориона, он включает в себя туманность в Орионе, более плотные газово-пылевые облака и другие объекты. Представим себе холодное газово-пылевое облако. Силы тяготения сжимают его, оно принимает шарообразную форму. При сжатии будут возрастать плотность и температура облака. Возникнет будущая, рождающаяся звезда (протозвезда). Температура ее поверхности пока еще мала, но протозвезда уже излучает в инфракрасном диапазоне, а поэтому рождающиеся звезды можно попытаться обнаружить среди довольно многочисленных источников инфракрасного излучения. Поиски протозвезд (и протогалактик) сейчас ведутся на многих обсерваториях.

Одно из основных отличий протозвезды от звезды заключается в том, что в протозвезде еще не происходят термоядерные реакции, то есть в ней нет еще основного источника энергии обычных звезд. Термоядерные реакции начинаются, когда в процессе сжатия протзвезды температура ее недрах станет порядка 107 К. С этого времени стадия сжатия звезды прекращается: сила внутреннего давления газа теперь уже может уравновесить силу тяготения внешних частей звезды.

Стадия сжатия звезд, массы которых значительно больше массы Солнца, продолжается всего лишь сотни тысяч лет, а звезды, массы которых меньше солнечной, сжимаются сотни миллионов лет. Чем больше масса звезды, тем при большей температуре достигается равновесие. Поэтому у массивных звезд большие светимости.

Стадию сжатия сменяет стационарная стадия, сопровождающаяся постепенным “выгоранием” водорода. В стационарной стадии звезда проводит большую часть своей жизни. Именно в этой стадии эволюции находятся звезды, которые располагаются на главной последовательности диаграммы “спектр – светимость”. Таких звезд больше всего. Время пребывания звезды на главной последовательности пропорционально массе звезды, так как от этого зависит запас ядерного горючего, и обратно пропорционально светимости, которая определяет темп расхода ядерного горючего. А поскольку светимость звезды пропорциональна примерно четвертой степени ее массы, то массивные звезды, массы которых в несколько раз больше массы Солнца, эволюционируют быстрее. Они находятся в стационарной стадии только несколько миллионов лет, а звезды, подобные Солнцу – миллиарды лет.

Когда весь водород в центральной области звезды превратится в гелий, внутри звезды образуется гелиевое ядро. Теперь уже водород будет превращаться в гелий не в центре звезды, а в слое, прилегающем к очень горячему гелиевому ядру. Пока внутри гелиевого ядра нет источников энергии, оно будет постепенно сжиматься и при этом еще более разогреваться. Когда температура внутри звезды превысит 1,5 * 107 К, гелий начнет превращаться в углерод (с последующим образованием все более тяжелых химических элементов). Светимость и размеры звезд будут возрастать. В результате обычная звезда постепенно превратится в красного гиганта или сверхгиганта. Многие звезды не сразу становятся стационарными гигантами, а некоторое время пульсируют, как бы проходя в своем развитии стадию цефеид.

Заключительный этап жизни звезды, как и вся ее эволюция, решающим образом зависит от массы звезды. Внешние слои звезд, подобных нашему Солнцу (но с массами, не большими 1,2 массы Солнца), постепенно расширяются и в конце концов совсем покидают ядро звезды. На месте гиганта остается маленький и горячий белый карлик. Белых карликов в мире звезд много. Это значит, что многие звезды превращаются в белых карликов, которые затем постепенно остывают, становясь “потухшими звездами”.

Иная судьба у более массивных звезд. Если масса звезды примерно вдвое превышает массу Солнца, то такие звезды на последних этапах своей эволюции теряют устойчивость. В частности, они могут взорваться как сверхновые, обогащая межзвездную среду тяжелыми химическими элементами (которые образовались внутри звезды и во время ее взрыва), а затем катастрофически сжаться до размеров шаров радиусом в несколько километров, то есть превратиться в нейтронные звезды.

Внутри звезд в ходе термоядерных реакций может образоваться до 30 химических элементов, а во время взрыва сверхновых – остальные элементы периодической системы. Из обогащенной тяжелыми элементами межзвездной среды образуются звезды следующих поколений.

Если масса звезды вдвое превышает массу Солнца, то такая звезда, потеряв равновесие и начав сжиматься, либо превратится в нейтронную звезду, либо вообще не сможет достигнуть устойчивого состояния. В процессе неограниченного сжатия (коллапса) она, вероятно, способна превратиться в черную дыру. Такое название связано с тем, что могучее поле тяготения сжавшейся звезды не выпускает за ее пределы никакое излучение (свет, рентгеновские лучи и т.д.). Поэтому черную дыру нельзя увидеть ни в каком диапазоне электромагнитных волн.

Дальнейшее развитие науки покажет, какие из сегодняшних представлений о происхождении галактик и звезд окажутся правильными. Но нет сомнения в том, что звезды рождаются, живут, умирают, а не есть однажды созданные и вечно неизменные объекты Вселенной; звезды рождаются группами, причем процесс звездообразования продолжается в настоящее время.

Современные представления о происхождении планет

Проблема происхождения планет – очень сложная и далеко еще не решенная проблема, во многом зависящая от развития не только астрономии, но и других естественных наук (прежде всего наук о Земле). Дело в том, что пока можно исследовать только единственную планетарную систему, окружающую наше Солнце. Как выглядят более молодые и более старые системы, вероятно существующие вокруг других звезд, неизвестно. Чтобы правильно объяснить происхождение планет, необходимо также знать, как образовалось Солнце и другие звезды, потому что планетарные системы возникают вокруг звезд в результате закономерных процессов развития материи.

Наиболее важные выводы планетной космогонии сводятся к следующему:

а) планеты сформировались в результате объединения твердых (холодных) тел и частиц, входивших в состав туманности, которая когда –то окружала Солнце. Эту туманность часто называют “допланетным” или “протопланетным” облаком. Считается, что солнце и протопланетное облако сформировались одновременно в едином процессе, хотя пока неизвестно, как произошло отделение части туманности, из которой возникли планеты, от “протосолнца”.

б) формирование планет происходило под воздействием различных физических процессов. Следствием механических процессов стало сжатие (уплощение) вращающейся туманности, ее удаление от “протосолнца”, столкновение частиц, их укрупнение и т.д. Изменялась температура вещества, туманности и состояние, в котором находилось вещество. Замедление вращения будущего Солнца могло быть обусловлено магнитным полем, связывающим туманность с “протосолнцем”. Взаимодействие солнечного излучения с веществом протопланетного облака привело к тому, что наиболее легкие и многочисленные частицы оказались вдали от Солнца (там, где сейчас планеты-гиганты).

в) спутники планет (а значит, и наша Луна) возникли, по-видимому, из роя частиц, окружающих планеты, то есть тоже из вещества протопланетной туманности. Пояс астероидов возник там, где притяжение Юпитера препятствовало формированию крупной планеты.

Основная идея современной планетной космогонии – это то, что планеты и их спутники образовались из холодных твердых тел и частиц.

Современные представления о строении Солнечной системы

Солнечная система еще не освоен человеком даже на миллионную часть. Он скрывает в себе много не известного, интересного не познанного.

Все объекты Солнечной системы можно разделить на четыре группы: Солнце, большие планеты, спутники планет и малые тела. Мы пока ничего не говорим о спутниках малых тел, поскольку к настоящему времени таких объектов открыто всего два, а наблюдательной информации недостаточно, чтобы детально исследовать их динамику.

СОЛНЕЧНАЯ СИСТЕМА, система космических тел, включающая, помимо центрального светила Солнца девять больших планет:

- Меркурий, первая планета от Солнцу большая планета Солнечной системы.

- Венера вторая планета от Солнца и ближайшая к Земле большая планета Солнечной системы.

- Земля единственная планета солнечной системы на которой существует жизнь.

- Марс четвертая планета по счету находящееся в нашей солнечной системе

- Юпитер пятая от Солнца большая планета.

- Сатурн планета, среднее расстояние от Солнца 9,54 а. е., период обращения 29,46 года

- Уран седьмая от Солнца, относится к планетам-гигантам

- Нептун относится к планетам-гигантам, от восьмая планета от солнца.

- Плутон является последней девятой планетой солнечной системы.

их спутники, множество малых планет, кометы, мелкие метеорные тела и космическую пыль, движущиеся в области преобладающего гравитационного действия Солнца. Согласно господствующим научным представлениям, образование Солнечной системы началось с возникновения центрального тела Солнца; поле тяготения Солнца привело к захвату налетевшего газово-пылевого облака, из которого в результате гравитационного расслоения и конденсации произошло формирование Солнечной системы.

Эволюция Солнечной системы до сих пор традиционно рассматривалась как перманентный процесс, в ходе которого газопылевое облако, сформировавшееся возле новорожденного Солнца, постепенно охлаждаясь, позволило образоваться первоначально совсем небольшим частицам твердого вещества, слипшегося в конечном счете в крупные астероиды и планеты, которые теперь в ходят в состав солнечной системы. Однако теперь появились свидетельства существования по крайней мере двух различных этапов развития планетных систем. Подобный вывод сделали геолог Юрий Амелин, работающий ныне в Университете Торонто (University of Toronto, Канада), и его соавтор (по соответствующей публикации в журнале Nature) Александр Крот из Гавайского университета (University of Hawaii, США) после изучения минеральной структуры так называемых хондр (chondrules) метеоритов Gujba и Hammadah al Hamra (находка сделана в Северной Африке, Ливийской Сахаре) и определения их изотопического возраста. Среди трех основных классов выпадающих на Землю метеоритов - каменных, железокаменных и железных - каменные метеориты, безусловно, являются самыми многочисленными (свыше 93%). В свою очередь эти три класса метеоритов по своему минеральному составу и структуре (текстуре) подразделяются на ряд групп и типов. Наиболее многочисленными среди каменных метеоритов входящих в солнечную систему считаются хондриты (chondrite) светло-серой или темной окраски, которые и содержат эти самые хондры - мелкие силикатные шарики. Такие шарики состоят из того же вещества, что и весь остальной метеорит, однако выделяются на его срезах в виде отдельных зерен и при этом довольно легко крошатся. А те каменные метеориты, что хондр не содержат, называются, соответственно, ахондритами. Размеры хондр различны - от микроскопических до сантиметровых. В межхондровом веществе нередко находят разбитые хондры и их обломки. Такая характерная структура присуща только метеоритам, она не встречается больше нигде в земных условиях и поэтому позволяет успешно выявлять внеземное происхождение найденных обломков. Согласно одному из самых популярных предположений, хондры образовались 4,56 миллиарда лет назад в районе Главного астероидного пояса между орбитами Марса и Юпитера, нашей солнечной системы. Совсем недавно возможность образования структур типа хондр удалось продемонстрировать на установке ESRF (European Synchrotron Radiation Facility) в ходе быстрого нагрева и последующего охлаждения образцов в экспериментах с пучками жесткого излучения. Таким образом родилась еще одна оригинальная гипотеза, авторы которой предположили, что сходный с экспериментальным поток жесткого излучения, порожденного близким гамма-всплеском (на расстояниях до 300 световых лет от Солнца), мог бы в принципе оказаться тем самым фактором, что определил весь ход формирования нашей планетной системы. А теперь выясняется, что новоизученные в ходе вышеописанного исследования хондры мало того, что никак не могли сформироваться под воздействием ударных волн, так еще и появились намного позже других известных образцов. Амелин высказал предположение, что эти "шарики" были сформированы в условиях гигантского раскаленного выброса испаряющейся материи в тот момент, когда произошло столкновение между двумя планетарными "эмбрионами" размером с нашу Луну или даже Марс. Следовательно, это можно считать свидетельством формирования "исконных планетных кирпичиков" - хондр - в то время, когда уже существовали какие-никакие, но протопланеты. "Это возвращает нас в ситуацию, когда уже вполне выстроенные схемы вновь обращаются в хаос, - признается ученый. - Но я уверен, что накопление новых данных позволит вернуть состояние этого былого порядка".

Самая многочисленная популяцию малых тел Солнечной системы — астероиды. Астероид – это небольшое планетоподобное тело Солнечной системы, размером от нескольких метров до тысячи километров. Первый астероид — Церера — был открыт в первый день XIX века сицилийским астрономом Пиацци. Хотя открытие и носило случайный характер, оно послужило толчком к разработке Гауссом классического метода определения орбит по трем наблюдениям и метода наименьших квадратов, благодаря которым удалось вычислить орбиту и переоткрыть Цереру спустя почти год после первых наблюдений. В настоящее время известно несколько десятков тысяч астероидов. Кометы - загадка Солнечной системы. Кометы - самые эффектные и самые загадочные тела Солнечной системы, приходящие с ее окраин к нашему светилу и имеющие вид туманных пятнышек. Дело, однако, в том, что не любое туманное пятнышко - комета. Мы знаем, что так выглядит целый ряд астрономических объектов: планетарные и диффузные туманности, шаровые и рассеянные скопления, галактики. Когда комета находится далеко от Солнца, ее трудно отличить от этих неподвижных пятнышек - астрономических образований. Поскольку в это время комета очень незначительно меняет свое положение на небе от ночи к ночи, наблюдатель, чтобы заметить такие изменения, должен быть очень искусным. Метеориты, малые тела Солнечной системы, попадающие на Землю из межпланетного пространства. Масса одного из крупнейших метеоров — Гоба метеорита — ок. 60 000 кг. Различают железные и каменные метеориты.

04.06.2004 В Антарктиде обнаружели метеорит-ровесник Солнечной системы, Небесный "скиталец" интересен для исследователей тем, что он - ровесник Солнечной системы, поэтому состоит из тех же элементов, что и наша планета в начальный период своего формирования Обнаруженный обломок - образец так называемой "первичной материи" Солнечной системы. Из такого материала могли образоваться не только Земля, но и другие планеты.

Особенности динамической эволюции малых тел Солнечной системы

В целом происхождение и динамическую эволюцию короткопериодических комет можно представить следующим образом. Объекты из внутренней области пояса Койпера под действием резонансных возмущений от Нептуна увеличивают эксцентриситеты своих орбит. Когда перицентры орбит попадают в область движения планет-гигантов, происходит сближение с одной из планет и объект переходит на орбиту, целиком лежащую в этой области, то есть становится Кентавром. Но подобные орбиты неустойчивы и объект за сравнительно короткое время покидает эту область. Может оказаться, что в процессе эволюции объект подойдет слишком близко к Солнцу и будет наблюдаться как короткопериодическая комета. Однако, как мы видели на примере комет семейства Юпитера, движение объекта из-за частых сближений с планетами-гигантами будет хаотическим. То, что такие сближения происходят достаточно часто, подтверждается наблюдениями. Наиболее эффектное событие такого рода произошло в июле 1992 г., когда после сближения с Юпитером комета Шумейкеров–Леви 9 стала его спутником и через два года в июле 1994 г. вошла в атмосферу Юпитера. Менее зрелищные, но не менее важные для небесной механики, события происходили с кометами Вольфа, Отерма 3 и многими другими.

Солнечная система - ее состав

Солнечная система состоит из солнца, девяти планет вращающихся вокруг звезды. Планеты солнечной системы в свою очередь делятся на планеты-гиганты, большие планеты, спутники планет и малые тела. Также солнечную систему посещаю кометы, с разной периодичностью.

Одной из новостей стало В Солнечной системе осталось 8 планет. Такое решение принято 24 августа 2006 года в Праге на 26-й Ассамблее Международного астрономического союза. После передела Солнечная система стала выглядеть удивительно гармонично: планеты земной группы — пояс астероидов — планеты-гиганты — пояс Койпера. Среди планет воцарился порядок, какой и должен быть в системе, населенной разумными представителями Вселенной.

Изучение солнечной сестемы будет продолжаться еще очень долго. Никто не сколько загаток скрывает солнечная система, сколько будет новых открытий, экспидиций, эксперементов. Одной из тайн еще долга будет оставать, всетаки как же образовалась солнечная система и как зародилась жизнь на планете Земля., была ли жизнь на других планетах. До сих пор существуют лишь теории. Потешествие по солнечной системе всегда превлекало человечество и талкало на иследования непоздного.

Концепции происхождения жизни.

а) Идея самопроизвольного происхождения.

Вначале в науке вообще не существовало проблемы возникновения жизни, потому что учеными античного мира допускалась возможность постоянного зарождения живого из неживого. Великий Аристотель (4-ый в. до Р. Х.) не сомневался в самозарождении лягушек. Философ Плотин в 3-ем веке до новой эры утверждал, что живые существа самозарождаются в земле в процессе гниения. Эта идея самопроизвольного зарождения организмов, видимо, представлялась многим поколениям наших далеких предков очень убедительной, так как просуществовала, не меняясь, долгие века, вплоть до 17-го века .

б) Идея происхождения жизни по принципу «живое – от живого».

В 17-ом веке опыты тосканского врача Франческо Реди показали, что без мух черви в гниющем мясе не обнаружатся, а если прокипятить органические растворы, то микроорганизмы в них вообще зарождаться не смогут. И только в 60-х гг. 19-го века французский ученый Луи Пастер в своих опытах продемонстрировал, что микроорганизмы появляются в органических растворах только потому, что туда раньше был занесен зародыш.

Таким образом, опыты Пастера имели двоякое значение –

Доказали несостоятельность концепции самопроизвольного зарождения жизни.

Обосновали идею о том, что все современное живое происходит только от живого.

в) Идея космического происхождения жизни.

Примерно в тот же период, когда Пастер продемонстрировал свои опыты, немецкий ученый Г. Рихтер разработал теорию занесения живых существ на Землю из космоса. Он утверждал, что зародыши могли попасть на Землю вместе с космической пылью и метеоритами и положить начало эволюции живого, которая породила все многообразие земной жизни. Эта концепция называлась концепцией панспермии. Ее разделяли такие ученые, как Г. Гельмгольц, У. Томпсон, что способствовало ее широкому распространению в научных кругах. Но она не получила научного доказательства, так как примитивные организмы или зародыши должны были бы погибнуть под действием ультрафиолетовых лучей и космического излучения.

г) Гипотеза А. И. Опарина.

В 1924 году вышла в свет книга «Происхождение жизни» советского ученого А. И. Опарина, где он экспериментально доказал, что органические вещества могут образовываться абиогенным путем при действии электрических зарядов, тепловой энергии, ультрафиолетовых лучей на газовые смеси, содержащие пары воды, аммиака, метана и др. Под влиянием различных факторов природы эволюция углеводородов привела к образованию аминокислот, нуклеидов и их полимеров, которые по мере увеличения концентрации органических веществ в первичном бульоне гидросферы способствовали образованию коллоидных систем, так называемых коацерватов, которые, выделяясь из окружающей среды и имея неодинаковую внутреннюю структуру, по-разному реагировали на внешнюю среду. Превращению углеродистых соединений в химический период эволюции способствовала атмосфера с ее восстановительными свойствами, которая потом стала приобретать окислительные свойства, что свойственно атмосфере и в настоящее время .

Гипотеза Опарина способствовала конкретному изучению происхождения простейших форм жизни. Она положила начало физико-химическому моделированию процессов образования молекул аминокислот, нуклеиновых оснований, углеводородов в условиях предполагаемой первичной атмосферы Земли.

д) Современные концепции происхождения жизни.

Сегодня проблема происхождения жизни исследуется широким фронтом различных наук. В зависимости от того, какое наиболее фундаментальное свойство живого исследуется и преобладает в данном изучении (вещество, информация, энергия), все современные концепции происхождения жизни можно разделить условно на:

Концепцию субстратного происхождения жизни (ее придерживаются биохимики во главе с А. И. Опариным).

Концепцию энергетического происхождения. Она разрабатывается ведущими учеными-синергетиками И. Пригожиным, М. Эйгеном.

Концепцию информационного происхождения. Ее развивали А. Н. Колмогоров, А. А. Ляпунов, Д. С. Чернавский.

Концепция генного происхождения.

Автором этой концепции является американский генетик Г. Меллер. Он допускает, что живая молекула, способная размножаться, могла возникнуть вдруг, случайно в результате взаимодействия простейших веществ. Он считает, что элементарная единица наследственности – ген – является и основой жизни. И жизнь в форме гена, по его мнению, возникла путем случайного сочетания атомных группировок и молекул, существовавших в водах первичного океана. Но математические расчеты этой концепции показывают полную невероятность такого события.

Ф. Энгельс одним из первых высказал мысль о том, что жизнь возникла не внезапно, а сформировалась в ходе длительного пути эволюционного развития материи. Эволюционная идея положена в основу гипотезы сложного, многоступенчатого пути развития материи, предшествовавшего зарождению жизни на Земле.

Современные биологи доказывают, что универсальной формулы жизни (т. е. такой, которая бы полностью отображала бы ее сущность) нет и быть не может. Такое понимание предполагает исторический подход к биологическому познанию как постижению сущности жизни, в ходе чего менялись и сами концепции происхождения жизни и представления о тех формах, в которых такое познание возможно.

Биоэнергоинформационный обмен как основа возникновения жизни.

Одной из новейших концепций происхождения жизни на Земле является концепция о биоэнергоинформационном обмене. Понятие биоэнергоинформационного обмен возникло в сфере биофизики, биоэнергетики и экологии в связи с последними достижениями в этих областях науки. Термин биоэнергоинформатика был введен доктором технических наук, профессором МГТУ им. Н. Э. Баумана В. Н. Волченко в 1989 году, когда им его единомышленниками была проведена первая Всесоюзная конференция по биоэнергоинформатике в Москве .

Изучение биоэнергоинформационного обмена дало основание высказать предположение об информационном единстве Вселенной, о наличии в ней такой субстанции, как «Информация – Сознание», а не только известных форм материи и энергии.

Одним из элементов этой концепции выступает наличие во Вселенной общего замысла, плана. Эта гипотеза подтверждается современной астрофизикой, согласно которой фундаментальные свойства Вселенной, значения основных физических констант и даже формы физических закономерностей тесно связаны со структурой Вселенной во всех ее масштабах и с возможностью Жизни.

Отсюда следует второй элемент концепции биоэнергоинформатики – Вселенную нужно рассматривать как живую систему. А в живых системах фактор Сознания (информации) наряду с материей и энергией, должен занимать весьма существенное место. Таким образом, можно говорить о необходимости триединства Вселенной: материи, энергии и информации.

Биологическое определение начала человеческой жизни

Началом человеческой жизни обычно принято считать тот момент, когда новорожденный, по образному выражению, «увидит свет». На самом деле человеческая жизнь начинается 40 неделями раньше, но первые 40 недель своей жизни человек проводит в организме матери.

Для вынесения любого суждения, прежде всего, необходимо определиться в понятиях. В данном случае следует разобраться, каков критерий определения человеческой жизни.

Ответ на этот вопрос может быть дан с разных точек зрения: религиозной, философской или биологической. Путаница возникает из-за смешения определений, которые дают эти дисциплины.

Религиозное определение. С религиозной точки зрения началом человеческой жизни считается момент сотворения души. Однако взгляды верующих разных конфессий на этот предмет отличаются друг от друга. При наличии множества религиозных течений и при существующей свободе вероисповедания представляется затруднительным дать четкое универсальное религиозное понятие такой сложной категории, как «начало человеческой жизни». Трудность заключается также в том, что есть и такие люди, которые вообще не верят в существование души.

Философское определение. Философская наука оперирует массой определений и понятий. Многие философы, например, считают, что «нечто» до тех пор не станет человеческой жизнью, пока не достигнет определенного уровня сознания, определенной способности любить ближнего, определенной степени человечности или уровня культуры, определенной степени самостоятельности или жизнеспособности, определенной меры физического или духовного совершенства и т. д.

Многие определения человеческой жизни основываются на этих и других критериях, обладающих некими общими чертами:

• все они остаются теориями, результатом философских, логических рассуждений;

• ни одно из них не может быть доказано наукой;

• каждый имеет право на собственные философские убеждения;

• люди считают истинными лишь те теории, к которым проявляют приверженность.

Биологическое определение. В этой сфере нет разногласий, так как все выводы здесь подтверждаются данными естественных наук. Происходящие в организме биологические процессы, начиная от одноклеточной стадии и до самой смерти, не вызывают разногласий.

Любая дискуссия о человеческой жизни должна вначале обратиться к данным эмбриологии, фетологии и медицины.

Естественнонаучные модели происхождения жизни

«Загадка появления жизни на Земле с незапамятных времен волнует людей. На протяжении веков менялись взгляды на эту проблему, и было высказано большое количество самых разнообразных гипотез и концепций. Некоторые из них получили широкое распространение и доминировали в те или иные периоды развития естествознания».

К теориям (моделям) происхождения жизни относят:

креационизм, утверждающий, что жизнь создана сверхъестественным существом в результате акта творения;

концепцию стационарного состояния, в соответствии с которой жизнь существовала всегда;

концепцию самопроизвольного зарождения жизни, основывающуюся на идее многократного возникновения жизни из неживого вещества;

концепцию панспермии, утверждающую, что жизнь занесена на Землю из космоса;

концепцию случайного однократного происхождения жизни;

Такое разнообразие взглядов вызвано тем обстоятельством, что точно воспроизвести или экспериментально подтвердить процесс зарождения жизни сегодня невозможно. Отмеченные теории преимущественно опираются на умозрительные представления как исследователей естественнонаучного направления, так и исследователей, придерживающихся теологических взглядов.

Итак, рассмотрим боле подробно вышеперечисленные модели происхождения жизни.

Концепция креационизма имеет самую длинную историю, так как практически во всех религиях возникновение жизни рассматривается как акт Божественного творения, свидетельством чего является наличие в живых организмах особой силы, которая управляет всеми биологическими процессами. Процесс божественного сотворения мира и живого недоступен для наблюдения, и божественный замысел недоступен человеческому пониманию.

Вопрос о продолжительности творения мира точно не определен в креационизме, т.к. В Библии сказано, что Бог сотворил мир в шесть дней. Некоторые христианские теологи верят, что это были обычные дни по 24 часа. Другие считают, что это образное выражение и на самом деле каждый день творения занимал тысячу лет. Но во всех случаях рассуждения о происхождении жизни основаны только лишь на вере в библейские откровения, сомневаться в которых нельзя. Научные же истины в соответствии с принципом фальсификации всегда подвергаются сомнению.

Таким образом, концепция креационизма, по существу, научной не является, ведь она возникла в рамках религиозного мировоззрения. Она утверждает, что жизнь такова, какова она есть, потому что такой ее сотворил Бог. Тем самым практически снимается вопрос о научном решении проблемы происхождения жизни, так как все религии требуют принимать это положение на веру, без доказательств. Несмотря на эти факты, данная модель происхождения жизни на земле весьма популярна.

Сторонники теории вечного существования жизни считают, что Земля никогда не возникала, а существовала вечно, и вместе с ней всегда существовали различные виды живого. Но при этом некоторые виды животных вымерли, некоторые изменились, а некоторые остались прежними. Большая часть аргументов в пользу этой теории основана на исследованиях палеонтологов, выявивших исчезновение некоторых видов животных в процессе эволюции, отсутствие следов переходных звеньев между разными видами живого и все более высокими оценками возраста Земли. Вследствие этого авторы и сторонники этой модели говорят, что жизнь на Земле никогда не возникала, а существовала всегда. В разные геологические эпохи менялись лишь формы жизни. Еще они полагают, что и различные виды животных существовали всегда, что у каждого вида есть лишь две возможности существования: изменение численности или вымирание.

Итак, рассмотрев теорию стационарного состояния, можно сделать вывод, что ее также нельзя отнести к естественнонаучным, потому что вопрос о происхождении жизни в ней принципиально не стоит: жизнь рассматривается как вечно существующая.

«Данная концепция также зародилась давно и долгое время была единственной альтернативной креационизму. Идея о самопроизвольном зарождении жизни появилась в результате повседневных наблюдений за тем, как в мусорных кучах, гниющих отбросах постоянно появляются личинки, черви, мухи. Поскольку о существовании микроорганизмов в те далекие времена не было ничего известно, то считалось, что все низшие организмы появляются путём самозарождения. Ученые Средневековья, например, допускали, что рыбы могли зародиться из ила, мыши — из грязи, мухи — из мяса и т.д. Подобных взглядов придерживались многие известные ученые (Аристотель, Парацельс, Коперник, Галилей, Декарт и др.), благодаря авторитету которых концепция самопроизвольного зарождения жизни смогла существовать так долго».

Однако начиная с XVII в. стали накапливаться данные, противоречащие такому пониманию происхождения жизни.

«В 1765 году Ладзаро Спалланцани провел следующий опыт: подвергнув мясные и овощные отвары кипячению в течение нескольких часов, он сразу же их запечатал, после чего снял с огня. Исследовав жидкости через несколько дней, Спалланцани не обнаружил в них никаких признаков жизни. Из этого он сделал вывод, что высокая температура уничтожила все формы живых существ, и что без них ничто живое уже не могло возникнуть.

В 1860 году проблемой происхождения жизни занялся Луи Пастер. К этому времени он уже многое сделал в области микробиологии и сумел разрешить проблемы, угрожавшие шелководству и виноделию. Он показал также, что бактерии вездесущи и что неживые материалы легко могут быть заражены живыми существами, если их не стерилизовать должным образом.

В результате ряда экспериментов, в основе которых лежали методы Спалланцани, Пастер доказал справедливость теории биогенеза и окончательно опроверг теорию спонтанного зарождения».

Концепция самозарождения жизни, несмотря на свою ошибочность, сыграла позитивную роль в развитии естествознания, поскольку опыты, призванные подтвердить ее, помогли получить богатый эмпирический материал для развивающейся биологической науки.

Практически одновременно с опытами Пастера немецким ученым Г. Рихтером была высказана гипотеза о занесении живых существ на Землю из космоса, получившая позднее название концепции панспермии. Согласно этой гипотезе жизнь в виде «семян» широко распространена в космосе, откуда зародыши простых организмов могли попасть в земные условия вместе с метеоритами и космической пылью и дать начало эволюции всего живого, породив таким образом все многообразие земной жизни. То есть данная теория допускала возможность возникновения жизни в разное время в разных частях Галактики и перенесения ее на Землю тем или иным способом. Основную идею концепции панспермии разделяли крупнейшие ученые конца XIX в. У. Томсон (барон Кельвин), Г. Гельмгольц, В.И. Вернадский и др.

В 1908 году шведский химик С. Аррениус выдвинул схожую гипотезу происхождения жизни из космоса. Он предположил, что зародыши, из которых развивается жизнь, всегда существуют в космическом пространстве, двигаясь там под влиянием световых лучей. Они могут оседать на поверхности планет, где потом из них развивается жизнь. Таким образом, Аррениус полагал, что жизнь на Земле возникла тогда, когда эти самые зародыши осели на ее поверхности.

Концепция панспермии была поддержана многими известными учеными, что способствовало ее широкому распространению. Довольно большое число сторонников имеет эта концепция и в наши дни. Так, американские астрономы, изучая газовую туманность, отстоящую от Земли на 25 тысяч световых лет, нашли в ее спектре следы аминокислот и других органических веществ. В начале 1980-х гг. американские исследователи обнаружили в Антарктиде осколок породы, выбитой когда-то с поверхности Марса крупным метеоритом. При помощи электронного микроскопа в этом камне были обнаружены окаменевшие останки микроорганизмов, похожие на земные бактерии. Это говорит о том, что в прошлом на Марсе существовала примитивная жизнь, может быть, она есть там и сейчас.

Тем не менее, серьезных аргументов в пользу концепции панспермии нет. При этом существуют серьезные доводы против нее. Дело в том, что, хотя спектр возможных условий для существования живых организмов достаточно широк, все же считается, что они должны погибнуть в космосе под действием ультрафиолетовых и космических лучей.

Но было также много противников данной теории, которые пытались ее опровергнуть. «Так, А.И. Опарин показал, что эта теория, строго говоря, ничего не дает. Во всяком случае, она не имеет никакого отношения к происхождению жизни, ибо даже если удастся доказать, что жизнь была занесена на нашу планету извне, то это не освобождает нас от необходимости объяснить, как же она возникла изначально. Теория панспермии позволяет разрешить лишь проблему происхождения земной жизни, одновременно увеличивая сложность основной проблемы во много раз».

В начале XX в. американский генетик Г. Меллер продолжил решение вопроса о происхождении жизни на земле. Он выдвинул гипотезу о случайном возникновении первичной молекулы живого вещества. Суть гипотезы заключается в предположении, что живая молекула, способная размножаться, могла возникнуть случайно в результате взаимодействия простейших веществ. Он считает, что элементарная единица наследственности - ген - является основой жизни. И жизнь в форме гена, по его мнению, возникла путем случайного сочетания атомных группировок и молекул, существовавших в водах первичного океана. Гипотеза случайного однократного появления жизни получила особенно широкое распространение среди генетиков после открытия роли ДНК в явлениях наследственности.

Однако, несмотря на широкое распространение данной теории, она также была опровергнута по причине отсутствия доказательств. Также следует отметить, что у данной естественнонаучной модели происхождения жизни на Земле в настоящее время практически нет сторонников.

Концепции антропогенеза

Мировоззрение человека по природе своей антропоцентрично. Человек является центральной фигурой в мифологии и религиях многих народов. Является он основным объектом изучения и в современной науке. Сколько существуют люди, столько они спрашивают себя: "Откуда мы?", "Каково наше место в мире?" Разные народы в разные времена давали свои ответы на этот вопрос. Племена с примитивной культурой охотно выбирали себе в предки разных животных. Делавары считали своим родоночальником орла, айны и папуасы из Моресбей - собаку, древние датчане и шведы - медведя, осаги - улитку. В глубокой древности берет начало идея о происхождении человека от обезьяны. Например, такие ультрадарвинистические , как мы могли бы сказать теперь, убеждения бытовали у малайцев и тибетцев. Южные арабы, древние мексиканцы и африканцы берега Лоанго, напротив, считали обезьян одичавшими людьми, на которых рассердились боги. Люди "возникали" по-разному. У одних народов они появлялись сами по себе, у других их создавали боги. С развитием цивилизаций роль богов возрастала. Своего апогея она достигла в трех мировых религиях - буддизме, христианстве и исламе. Боги делали человека из глины и из дыхания, из тростника и единою мыслью... Бытовали и иные представления о месте человека в системе природы. Эпоха античности ознаменовалась началом развития философской мысли. Занимаясь в основном вопросами более высокого порядка, античные авторы были не слишком многословны в своих трактовках возникновения человеческого рода. В их работах вопрос антропогенеза часто решался в духе мифологической традиции. Но была и иная точка зрения - возникновение и развитие человека как неотъемлемой части живой и неживой природы. Римский поэт и философ Тит Лукреций Кар(I в. до н.э.) написал целую поэму, в которой "естественное" происхождение человека описано достаточно подробно:...Так как в полях еще много тепла оставалось и влаги, То повсеместно, где только к тому представлялось удобство, Выросли некие матки, корнями к земле прикрепившись, Кои раскрылись, когда их зародыши в зрелую пору От мокроты захотели бежать и нуждались в дыханьи .

(Лукреций Кар "О природе вещей")

Начиная с XVIII в. и до современности вопрос о природе человека оставался весьма популярным у философов, в трудах которых можно найти немало весьма оригинальных взглядов на эту проблему. Но, как ни странно, философы меньше говорят о возникновении человека, и больше - о его месте, значении и предназначении во Вселенной. Зачастую философская мысль черпает вдохновение из религии. Стройность же своих построений она заимствует у науки. Наконец, существует и такой феномен человеческой культуры, как наука. Хотя первые высказывания науки по поводу возникновения человека делались с оглядкой на религиозные догматы, с завершением эпохи средневековья она приобрела самостоятельность. Главным отличием науки от религии и философии является стремление обосновать свои выводы, найти им подтверждение в фактах. А факты говорили науке о родстве людей и обезьян. Процесс развития, приведший к появлению современного человека, получил в науке особое название - антропогенез. Антропогенез (от греч. anthropos - человек, genesis - развитие) - процесс эволюции предшественников современного человека, палеонтология человека. Также - наука, изучающая этот процесс. И религиозные, и философские, и научные взгляды со временем менялись, влияли друг на друга и причудливо переплетались. Иногда крайне сложно разобраться, к какой сфере отнести ту или иную концепцию. Количество существующих взглядов на происхождение человека огромно.

  • Причины этого на наш взгляд следующие:

    • большой интерес публики и как следствие - необходимость осторожности в выводах, пересечение с религиозными, философскими, традиционными и даже политическими воззрениями;

    • многие неспециалисты занимаются антропогенезом - их точки зрения могут быть более популярны, чем строго научные построения;

    • недостаток материалов - ограниченность ископаемых находок, их фрагментарность, часто - труднодоступность для изучения;

Одной из причин является и существование множества методов изучения процесса антропогенеза, часто приводящих специалистов к неоднозначным и неодинаковым результатам.

Согласно религиозным воззрениям, человек был создан неким высшим существом - Богом или несколькими богами. Такая точка зрения называется креационизм (от лат. creatio - сотворение, создание). Пути создания человека в разных верованиях различаются. Слово же "креационизм" применяется обычно в связи с христианством, а еще точнее, католицизмом. Креационизм можно разделить на ортодоксальный (или антиэволюционный) и эволюционный. Теологи-антиэволюционисты считают единственно верной точку зрения, изложенную в Священном Писании (Библии). Согласно ей, человек, как и другие живые организмы, был создан Богом в результате одномоментного творческого акта и в дальнейшем не изменялся. Сторонники этой версии либо игнорируют доказательства длительной биологической эволюции, либо считают их результатами других, более ранних и, возможно, неудачных творений. Некоторые теологи признают существование в прошлом людей, отличных от живущих сейчас, но отрицают какую-либо преемственность их с современным населением. Теологи-эволюционисты признают возможность биологической эволюции. Согласно им, виды животных могут превращаться один в другой, однако направляющей силой при этом является Божественная воля: человек мог возникнуть от более низко организованных существ, однако его дух оставался неизменным с момента первоначального творения, а сами изменения происходили под контролем и по желанию Творца. Как ни удивительно, западный католицизм официально стоит на позициях эволюционного креационизма. Энциклика папы Пия XII (1950 г.) допускает, что Бог мог создать не готового человека, а обезьяноподобное существо, впрочем, вложив в него бессмертную душу. Современные креационисты проводят многочисленные исследования с целью доказать отсутствие преемственности древних людей с современными или же - существование современных людей в глубокой древности. Для этого они используют те же материалы, что и официальная наука, однако смотрят на них под другим углом зрения. Как показывает практика, большинство доказательств по поводу происхождения человека опирается на палеоантропологические находки с неясными датировками или условиями нахождения. Весьма часто креационисты оперируют некорректными с точки зрения науки методами. Их критика обрушивается на те области науки, что еще недостаточно полно освещены или незнакомы самим креационистам. Стоит указать, что число креационистких течений, - и философских, и научных, - весьма велико. В России же они почти не представлены, хотя значительное число ученых-естествоиспытателей склоняется к подобному мировоззрению.

С античных времен зародилась мысль, что весь мир представляет собой единую систему, развивающуюся по одним законам. Такое мировоззрение носит название глобальный эволюционизм . Человек является частью мира и занимает в нем вполне определенное место. Согласно разным вариантам глобального эволюционизма, место это более или менее скромное либо же, напротив, центральное и ведущее. Представителями глобального эволюционизма являются К.М. Бэр, П. Тейяр де Шарден, В.И. Вернадский, Н.Н. Моисеев. В 1834 г. К.М. Бэр сформулировал "всеобщий закон природы", гласящий, что материя развивается от низших форм к высшим. В приложении к человеку это означало, что он произошел от неких низших животных и в процессе длительного эволюционного процесса достиг современного уровня (К.М. Бэр1924г.) Идея непрерывного усложнения Вселенной получила значительное развитие в трудах П. Тейяра де Шардена и В.И Вернандского. Их точки зрения на движущие силы этого процесса различны: у П. Тейяра де Шардена это потусторонний мыслящий центр, у В.И. Вернадского - силы природы. Согласно авторам, венцом эволюции материи - космогенеза – является антропогенез. На определенном этапе антропогенеза возникает ноосфера - мыслящая оболочка планеты с отделением мыслящего духа от своей материальной основы (Шарден Тейяр П., 1965; Вернадский В.И., 1977; Алексеев В.П., 1984). Согласно концепции крупного отечественного философа Н.Н. Моисеева, Вселенная представляет собой суперсистему, включающую в себя множество подсистем. Человек в ходе эволюции достиг уровня, когда прекратилось совершенствование морфологии индивидов, но начался отбор социальных групп - популяций, племен и народов. Совершенствование Вселенной в целом и человеческого общества в частности является процессом самопроизвольным. Как и К.М. Бэр, Н.Н. Моисеев считает процесс эволюции мира направленным, идущим от простого к сложному. Движущей силой является отбор систем на устойчивость к воздействиям внешней среды (Мосиеев Н.Н., 1990). Относительно непосредственно процесса эволюции человека сторонники глобального эволюционизма склоняются к научной точке зрения. И П. Тейяр де Шарден, и Н.Н. Моисеев, кроме направленности эволюционного процесса, признают большое значение для процесса происхождения человека естественного отбора и конкуренции. Что же говорит по этому поводу наука?

После средневекового застоя, в XVIII в. наука начала свое бурное развитие. Естествоиспытатели этого времени - Д. Дидро, К. Гельвеций, Ж. Бюффон, Д. Монбоддо и другие - часто высказывали мнение о "перерождении" одних организмов в другие, в том числе - обезьяны в человека. Изучение анатомии и морфологии самых разнообразных животных приводило к мысли о большем или меньшем их сходстве. Часто это представлялось в виде так называемой "лестницы существ". "Лестница" ведет от низших организмов к высшим, с человеком на вершине, но зачастую вовсе не подразумевает родство этих форм. Концепция изменения одних существ в другие - биологическая эволюция - приобретала в трудах натуралистов все более отчетливые очертания. Впервые объемное обоснование гипотезы эволюции и происхождения человека от "четвероруких" опубликовал Ж.Б. Ламарк в 1802 и 1809 гг. Однако механизмы эволюционных изменений, предложенные Ж.Б. Ламарком, выглядят слишком простыми и довольно неубедительными. Даже у современников ученого эта теория в своем законченном виде не получила широкого признания. Куда более резкий общественный и научный резонанс вызвала теория эволюции Ч. Дарвина, опубликованная в 1859 г. в книге "Происхождение видов путем естественного отбора", в 1871 г. в книге "Происхождение человека и половой подбор" и в других работах (Дарвин Ч., 1986). С момента опубликования, взгляды Ч. Дарвина получили как горячих сторонников, например, Т. Гексли и Э. Геккеля, так и яростных противников - епископа Уильберфорса, натуралиста Майварта и др. Теория продолжала развиваться, а после открытия генетического наследования и его законов, стала называться синтетической теорией эволюции. Краткая ее суть заключается в следующем. Генетический материал живых организмов имеет свойство изменяться под воздействием разнообразных факторов. Эти изменения могут быть вредными или полезными. Если организм оказывается более приспособленным, чем его сородичи, то имеет шанс оставить больше потомства, передав ему свои генетически закрепленные качества. С изменением среды полезнее оказываются признаки, бывшие до того нейтральными или даже вредными. Организмы, имеющие такие признаки, выживают, и признаки остаются у потомства. Существуют несколько видов отбора. Так происходит изменение наследственности со временем, хотя длится оно обычно очень долго - в течение многих поколений. Предки человека, будучи частью окружавшей их природы, по причине изменения внешних условий постепенно видоизменялись, что и привело к появлению современного человека. В настоящее время синтетическая теория эволюции не является единственной научной теорией эволюции. Можно вспомнить, например, разнообразные варианты мутационизма. Согласно им, изменения наследственности происходят не в течение длительного времени, а практически одномоментно и дают сразу новую форму организмов. Однако именно синтетическая теория эволюции имеет в настоящий момент наиболее доказательную базу и подтверждается большинством биологических исследований. Относительно конкретных факторов, действовавших на предков человека в процессе эволюции, существуют разные взгляды. В 1876 г. Ф. Энгельс опубликовал статью "Роль труда в процессе превращения обезьяны в человека" (подробнее, см.: Харитонов В.М., 1998. С. 121-123). В ней он сформулировал идею, по которой эволюция человека происходила в основном по социальным причинам. Главной движущей силой преобразования обезьяны в человека, одновременно отличающей их друг от друга, Ф. Энгельс считалтрудовую деятельность. "Труд создал человека", а также и его современную анатомию. Переход к прямохождению привел к освобождению рук от функции передвижения. Руки стали использоваться для изготовления и применения орудий труда. Усложнение трудовых операций приводило к увеличению головного мозга, что вновь вызывало усложнение деятельности. Труд также содействовал сплочению коллектива, возникновению речи и, наконец, общества. Конкретным механизмом влияния социокультурной среды на биологическую эволюцию Ф. Энгельс считал закрепление в наследственности приобретенных в процессе труда морфологических признаков. Такое объяснение не согласуется с современными представлениями о генетической наследственности, однако некая связь социокультурной и биологической эволюции несомненна и выявляется вполне определенно. Альтернативную социокультурной, сугубо биологическую концепцию эволюции человека выдвинул в 1918 г. анатом Л. Больк. Она получила название "гипотеза фетализации". Согласно Л. Больку, человек представляет собой как бы "неповзрослевшую" обезьяну. Множество признаков взрослого человека - большой мозг относительно малого лица, отсутствие шерсти на теле и наличие ее в виде волос на голове, слабая пигментация у некоторых рас - соответствуют таковым у эмбриона шимпанзе. Явление замедление развития (ретардация) эмбриона известно у многих животных. Выпадение из жизненного цикла у животных взрослой стадии, когда размножается личинка, называется неотенией. Таким образом, человек, по Л. Больку, представляет собой половозрелый зародыш обезьяны (подробнее, см.: Харитонов В.М., 1998. С. 119-121). Данная концепция подверглась серьезной критике. Так, например, замедлением развития невозможно объяснить большие абсолютные размеры мозга у человека. Сейчас ясно, что положения гипотезы фетализации нельзя понимать буквально. Однако собранный Л. Больком сравнительный материал не может быть отвергнут, а идеи эволюции за счет эмбриональных изменений находят своих последователей. Влияние внешних условий на эволюцию предков человека получило освещение в концепции Г. Вейнерта, опубликованной впервые в 1932 г (Вейнерт Г., 1935). Основными движущими силами он считал климатические изменения на планете. Современный человек возник под воздействием суровых условий ледникового периуда. Бороться с этими условиями человеку помогал огонь. Огонь играл огромную роль в жизни первобытных людей - согревал, защищал от свирепых хищников... Человек потерял волосяной покров на теле из-за постоянного ношения одежды и обогревания огнем, большие клыки и челюсти из-за нового способа приготовления пищи на огне и использования огня для борьбы с хищниками. Люди собирались вокруг очагов, что способствовало общению и привело к возникновению речи. Концепция Г. Вейнерта слишком сильно ограничивает возможные факторы эволюции предков человека условиями ледникового периода и, учитывая новейшие знания об изменениях климата на планете и этапах заселения Земли, не может быть полностью принята. Однако идея о важности климатических изменений для биологической эволюции и возникновения общества весьма продуктивна и имеет множество сторонников среди современных антропологов. Оригинальную гипотезу выдвинул Б.Ф. Поршнев в книге "О начале человеческой истории (Проблемы палеопсихологии)" (Поршнев Б.Ф., 1974). Согласно ей, древнейшие предки человека - троглодитиды - уровнем своей психической деятельности не отличались от животных. По способу питания они были падальщиками. Стадия "трупоядения" была промежуточной между растительноядностью и хищничеством. Инстинкт раскалывания камнями орехов или моллюсков троглодитиды перенесли на черепа животных, а затем на сами камни. Таким образом, производство каменных орудий у троглодитид не отличалось по сути от деятельности бобров или муравьев. Вместе с тем, у троглодитид значительно развилась способность к суггестии - психическому внушению, что позволяло им побуждать других индивидов действовать выгодным для внушающего образом. Развилась также и контрсуггестия - вторая сигнальная система, речь. С возникновением речи Б.Ф. Поршнев связывает возникновение собственно людей. Люди отличаются от троглодитид не только наличием речи, но также активной охотой, сознательной трудовой деятельностью и наличием искусства. Однако первым людям приходилось тяжело, поскольку троглодитиды использовали их с помощью аппарата интердикции - способности вызывать нерациональные имитативные рефлексы. Поэтому у части первых людей усилилась способность к суггестии для борьбы с троглодитидами. Другая же часть, во избежание контактов с троглодитидами начала мигрировать по планете. В новых условиях люди приспосабливались как биологически, так и культурно. Когда же Земля оказалась полностью заселенной, началась откатная волна миграций, войны же с троглодитидами стали успешными благодаря достигнутому техническому прогрессу. Концепция Б.Ф. Поршнева не подтверждается фактическими данными, однако заставляет обратить больше внимания на психологические аспекты эволюции человека.

Как же мы можем узнать о том, откуда взялся человек? Религия предлагает наиболее простой путь решения: все сказано в Священном Писании. Философы выводят свои заключения, исходя из своей логики. Ученые пытаются доказать свои положения, обосновав с помощью известных фактов. Когда фактов не хватает, ученые проводят специальные исследования, восполняя наши знания об окружающем мире. Согласно современным научным взглядам, человек возник в ходе длительной биологической эволюции. Его предки на некотором этапе были одновременно и предками современных человекообразных обезьян, а в более отдаленном прошлом - также и предками других животных. Однако принципиальное отличие антропогенеза от эволюции прочих организмов заключается в том, что на поздних этапах антропогенез был тесно связан с формированием общества - социогенезом. Это является спецификой антропогенеза и одновременно крайне расширяет горизонты исследований. Изучая прошлое человечества, невозможно ограничиться лишь рассмотрением только биологической его стороны или же только социальной. Человек является истинно биосоциальным существом, он не может существовать вне общества, равно как и общество состоит из отдельных индивидов. Потому-то антропогенез и является переплетением множества разнообразных научных дисциплин, а исследование эволюции человека похоже на детективное расследование, где любой мельчайший факт может изменить картину.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]