Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Podgotovka_k_ekzamenu_po_matvedu.docx
Скачиваний:
27
Добавлен:
19.07.2019
Размер:
3.36 Mб
Скачать

10.Термическая обработка углеродистых инструментальных сталей.

Эти стали по ГОСТ 1435  содержат 0,65— 1,35% С.

Они маркируются У7, У7А ... У13, У13А. Буква У обозначает что сталь углеродистая, число показывает содержание углерода в десятых долях процента (при­ложение табл. 9).

Углеродистые инструментальные стали обладают высокой твердостью, прочностью, хорошо шлифуются при изготовлении инструмента, дешевы и недефицитны.

Стали У7, У7А, У8, У8А, содержащие 0,7—0,8% С, применяют для инструментов по дереву и инструментов ударного действия, когда требуется повышенная вяз­кость,— пуансонов, кернов, зубил, кузнечных штампов и т.д.

Стали У9—У13 (У9А—У13А), содержащие 0,9— 1,3% С, обладают более высокой твердостью и износо­стойкостью. Из этих сталей изготавливают сверла, мет­чики, развертки, фрезы, плашки и др. Из стали У13, имеющей максимальную твердость (HRC 62—64) и из­носоустойчивость, изготавливают напильники, гравер­ный инструмент и т. п.

Для снижения твердости и создания благоприятной структуры все стали до изготовления инструмента под­вергают предварительной термической обработке — от­жигу. Поскольку наличие сетки вторичного цементита ухудшает качество и срок службы инструмента, заэвтектоидные стали подвергают сфероидизирующему от­жигу, нагревая стали У9 и У10 до 740—750° С, а У11 и У12 до 750—780° С. В результате такого отжига пла­стины ЦII делятся (на этот процесс положительно вли­яет наличие субграниц и скоплений дислокаций). Регу­лируя скорость охлаждения можно получать глобули Пи различного размера.

Окончательная термическая обработка — закалка и отпуск.

Температура закалки доэвтектоидных сталей Ас+ 30° С, заэвтектоидных сталей Ас1+(40-50°С).

Структура закаленной стали — мелкоигольчатый мартенсит или мелкоигольчатый мартенсит с мелкими карбидами. Температуру отпуска выбирают в зависи­мости от твердости, необходимой для данного вида ин­струмента.

Для инструментов ударного действия (У7, У8), ког­да требуется повышенная вязкость, применяют отпуск при температурах 280—300° С (HRC 56—58). Для на­пильников, метчиков, плашек и т.п. (стали У10—У13) производят низкотемпературный отпуск при 150—200° С, что обеспечивает инструменту максимальную твердость (HRC 62—64).

Основные недостатки углеродистых сталей — их не­большая прокаливаемость, примерно до 5—10 мм, и низкая теплостойкость. При нагреве выше 200° С их твердость резко снижается. Инструменты из этих ста­лей могут работать лишь при небольших скоростях ре­зания

11.Термические и структурные напряжения, возникающие в изделии при термической обработке. Способы их предотвращения или устранения. Способы закалки стали.

К наиболее распространенным порокам, возникающим в стали при термической обработке, относятся обезуглероживание, пережог, перегрев, короб­ление, трещины и др.

Обезуглероживание — выгорание углерода из поверхностных слоев изделия в процессе нагрева их под закалку в печах с окислительной атмосферой. Обезуглероживание приводит к ухудшению механических свойств поверхностного слоя детали. Для предотвращения обезуглероживания (а также и окалинообразования) при термической обработке нагрев деталей производится в пе­чах с восстановительной и нейтральной атмосферой или в расплавленных металлических и соляных ваннах.

Перегрев связан с интенсивным ростом зерна аустенита при высоких температурах нагрева или длительной выдержке в печи при нормальной температу­ре нагрева. При закалке это приводит к возникновению повышенной хрупкости. Перегретая сталь может быть исправлена последующей термической обработкой по нормальному режиму.

Пережог — окисление стали по границам зерен при высоких температурах нагрева в условиях окислительной среды. Пережженная сталь не может быть исправлена последующей термической обработкой.

Недостаточная твердость стали после закалки может быть связана с нагревом изделия из доэвтектоидной стали ниже точки АС3,. или недостаточной выдержкой при нормальной закалочной температуре. В том и другом случае произойдет неполная закалка стали. Пониженная твердость стали после такой закалки объясняется присутствием в структуре стали наряду с мартенситом и феррита. Пониженная твердость стали может быть вызвана также недостаточно интенсивным охлаждением; в этом случае не весь аустенит превращается в мартенсит, и в структуре стали наряду с мартенситом будут присутствовать другие закалочные структуры.

Коробление и трещины возникают под влиянием температурных и структурных внутренних напряжений. Появление температурных напряжений в стали при нагревании и охлаждении связано с неодинаковой скоростью изменения температуры по сечению, что приводит к неодновременному изменению объема отдельных участков детали. Структурные напряжения возникают при фазовых превращениях, сопровождающихся увеличением объема (особенно при превращении аустенита в мартенсит). Внутренние напряжения вызывают искажение внешней формы деталей (поводка, коробление). Если напряжения превышают предел прочности материала, то это может вызвать разрушение (трещины) деталей. Следует иметь в виду, что чем выше прокаливаемость стали, тем больше склонность к образованию трещин. С повышением содержания углерода чувствительность стали к возникновению трещин возрастает. Структурные изменения, происходящие в металле при термической обработке, вызывают изменение объема (деформацию), а неравномерность охлаждения - искажение внешней формы (коробление). Например, наибольший объем из структур имеет мартенсит, поэтому при закалке с получением мартенситной структуры будет увеличиваться объем детали. Коробление может происходить без изменения объема (под влиянием термических напряжений) и с изменением объема (под влиянием структурных напряжений). Для первого случая характерным является деформация деталей из железа после многократного нагрева ниже температуры в критической точке и охлаждения; форма деталей будет приближаться к форме шара (рис. 46, а). Для второго случая характерным является деформация стальных деталей после многократной закалки на мартенсит (рис. 46, б). У детали кубической формы грани выгибаются к центру. У цилиндрической детали длина увеличивается, а у детали в форме диска толщина уменьшается. Таким образом, форма различных деталей под влиянием структурных напряжений изменяется иначе, чем под влиянием термических напряжений. 

Уменьшение коробления достигается также правильным способом погружения детали в охлаждающую жидкость, например, длинные стержневые детали необходимо охлаждать в вертикальном положении, закаливать в закалочных машинах и штампах и др. Коробление детали исправляют правкой или рихтовкой.

Способы закалки стали.

Выбор того или иного способа охлаждения при закалке определяется во-первых получением наибольшей прокаливаемости и во-вторых минимальным уровнем остаточных внутренних напряжений, чтобы уменьшить коробление деталей.

Используются несколько способов закалки, которые классифицируются по методу охлаждения:

1-закалка в одном охладителе;

2-закалка в двух охладителях;

3-ступенчатая закалка;

4-изотермическая закалка.

Все рассмотренные способы закалки показаны на диаграмме распада переохлажденного аустенита на рис.45.

Закалка в одном охладителе (воде или масле). Это наиболее простой и распространенный способ. Однако некоторые стали при охлаждении в воде склонны к возникновению трещин. При охлаждении в масле скорость охлаждения меньше, но многие стали при таком охлаждении не закаливаются (скорость охлаждения меньше Vкр и мартенсит не образуется).

Закалка в двух охладителях (через воду в масло). При этом методе в верхнем интервале температур скорость охлаждения велика, но сталь достаточно пластична и значительных напряжений не возникает. При этом способе сталь быстро охлаждается в интервале температур 750–400°С, а затем деталь переносится в другую, более мягкую, охлаждающую среду, и в мартенситном интервале охлаждение происходит замедленно, что практически исключает образование трещин. Твердость при таком методе закалки такая же, как при закалке в воде.  (рис.45, кривая 2). Это приводит к уменьшению внутренних напряжений и снижает вероятность появления трещин. Примером такой закалки может быть процесс с охлаждением вначале в воде, а затем в масле.

Ступенчатая закалка -заключается в том, что после нагрева детали переносят в печь-ванну с расплавом щелочей (обычно КОН+NaOH). Нагретую до температуры немного выше начала образования мартенсита (на 20-30° выше точки Мн т.е. до 350-4000С), выдерживают небольшое время для выравнивания температуры по сечению, а затем охлаждают в масле или на воздухе (рис.45, кривая 3). При этом обеспечивается быстрое охлаждение стали в верхней области температур, а затем делается выдержка, во время которой температура по сечению детали выравнивается, и термические напряжения уменьшаются.

Твердость после такой закалки такая же, как и в предыдущих способах, но напряжения и вероятность образования трещин еще меньше. В качестве жидких сред для ступенчатой закалки используют расплавы щелочей, селитры, легкоплавких металлов.

Ступенчатая закалка применяется только для мелких изделий (до 10мм) из углеродистых сталей. Для более крупных деталей ее не применяют, так как в расплаве щелочей скорость охлаждения внутри детали мала.

Для легированных сталей, обладающих высокой устойчивостью переохлажденного аустенита, такую закалку применять нецелесообразно, так как они обычно хорошо закаливаются в масле, которое достаточно медленно охлаждает при температурах образования мартенсита.

Изотермическая закалкапроводится так же как и ступенчатая, но в расплаве щелочей детали выдерживают более длительное время (до полного распада аустенита на бейнит (рис.45,кривая 4). При этом существенных напряжений не возникает, но твердость получается ниже, чем при других способах закалки. Преимуществом этого способа является то, что после него не требуется отпуска. Изотермическая закалка обычно применяется для деталей сложной формы, склонных к деформациям и образованию трещин.

Выбор того или иного способа охлаждения при закалке определяется во-первых получением наибольшей прокаливаемости и во-вторых минимальным уровнем остаточных внутренних напряжений, чтобы уменьшить коробление деталей.

Используются несколько способов закалки, которые классифицируются по методу охлаждения:

1-закалка в одном охладителе;

2-закалка в двух охладителях;

3-ступенчатая закалка;

4-изотермическая закалка.

Все рассмотренные способы закалки показаны на диаграмме распада переохлажденного аустенита на рис.45.

Закалка в одном охладителе (воде или масле). Это наиболее простой и распространенный способ. Однако некоторые стали при охлаждении в воде склонны к возникновению трещин. При охлаждении в масле скорость охлаждения меньше, но многие стали при таком охлаждении не закаливаются (скорость охлаждения меньше Vкр и мартенсит не образуется).

Закалка в двух охладителях (через воду в масло). При этом методе в верхнем интервале температур скорость охлаждения велика, но сталь достаточно пластична и значительных напряжений не возникает. При этом способе сталь быстро охлаждается в интервале температур 750–400°С, а затем деталь переносится в другую, более мягкую, охлаждающую среду, и в мартенситном интервале охлаждение происходит замедленно, что практически исключает образование трещин. Твердость при таком методе закалки такая же, как при закалке в воде.  (рис.45, кривая 2). Это приводит к уменьшению внутренних напряжений и снижает вероятность появления трещин. Примером такой закалки может быть процесс с охлаждением вначале в воде, а затем в масле.

Ступенчатая закалка -заключается в том, что после нагрева детали переносят в печь-ванну с расплавом щелочей (обычно КОН+NaOH). Нагретую до температуры немного выше начала образования мартенсита (на 20-30° выше точки Мн т.е. до 350-4000С), выдерживают небольшое время для выравнивания температуры по сечению, а затем охлаждают в масле или на воздухе (рис.45, кривая 3). При этом обеспечивается быстрое охлаждение стали в верхней области температур, а затем делается выдержка, во время которой температура по сечению детали выравнивается, и термические напряжения уменьшаются.

Твердость после такой закалки такая же, как и в предыдущих способах, но напряжения и вероятность образования трещин еще меньше. В качестве жидких сред для ступенчатой закалки используют расплавы щелочей, селитры, легкоплавких металлов.

Ступенчатая закалка применяется только для мелких изделий (до 10мм) из углеродистых сталей. Для более крупных деталей ее не применяют, так как в расплаве щелочей скорость охлаждения внутри детали мала.

Для легированных сталей, обладающих высокой устойчивостью переохлажденного аустенита, такую закалку применять нецелесообразно, так как они обычно хорошо закаливаются в масле, которое достаточно медленно охлаждает при температурах образования мартенсита.

Изотермическая закалка проводится так же как и ступенчатая, но в расплаве щелочей детали выдерживают более длительное время (до полного распада аустенита на бейнит (рис.45,кривая 4). При этом существенных напряжений не возникает, но твердость получается ниже, чем при других способах закалки. Преимуществом этого способа является то, что после него не требуется отпуска. Изотермическая закалка обычно применяется для деталей сложной формы, склонных к деформациям и образованию трещин.

Соседние файлы в предмете Материаловедение