Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РЕФЕРАТ оптоволокно.doc
Скачиваний:
23
Добавлен:
14.07.2019
Размер:
173.57 Кб
Скачать

Московский областной государственный колледж отделение технических специальностей

Специальность 210308 Техническое обслуживание и ремонт радиоэлектронной техники

Реферат

По дисциплине Вычислительная техника

По теме: «Использование оптоволокна в радиоэлектронике»

Выполнил:

Студент: Сова Н.В.

группа 3РЭ/09

Руководитель: Деордиев С.А.

г. Раменское

2011 год

Содержание

Введение:

-Цели реферата

-Задачи реферата

-Объект исследования

Основная часть работы:

-Введение

-История оптоволокна

-Одномодовые и многомодовые волокна

- Потери в оптоволокне

-Сварка оптического волокна

-Применение в радиоэлектронике

Заключение:

-Список литературы

Цели реферата:

  • Изучение оптического волокна.

  • Изучение применения оптоволокна в электронике.

  • Расширение кругозора в области изучения волоконной оптики.

Задачи, которые я решал в ходе работы:

  • Сбор материала по теме

  • Приобретение навыков исследовательской работы, применяя практические знания

  • Создание иллюстративного материала

Объект исследования:

  • Оптическое волокно

Введение

Волоконная оптика - раздел оптики, рассматривающий распространение электромагнитных волн оптического диапазона по световодам - оптическим волокнам.

Опти́ческое волокно́ — нить из оптически прозрачного материала (стекло, пластик), используемая для переноса света внутри себя посредством полного внутреннего отражения. Оптическое волокно - типичный диэлектрический волновод электромагнитных волн.

Конструкция отдельно взятого оптического волокна достаточно проста. Сердечник из оптически более плотного материала окружен оболочкой с меньшим коэффициентом преломления и все это покрыто защитной оболочкой (рис.1).

Когда поток света пересекает границу раздела двух сред с показателями преломления n1 и n2 то, как известно, наблюдаются два явления: преломление и отражение. Если световой поток пересекает границу раздела со стороны оптически более плотной среды, то угол преломления больше угла падения. С ростом угла падения преломленный луч будет прижиматься к границе раздела. И, наконец, при определенном угле падения, называемом критическим, преломленный луч начнет скользить вдоль поверхности раздела. При углах падения, больших критического, преломленный световой поток отсутствует (в идеализированном случае), поверхность раздела приобретает свойства зеркала - вся переносимая лучом энергия остается в отраженном потоке. Это явление носит название полного внутреннего отражения (рис.2). На эффекте полного внутреннего отражения построены все оптические волокна. Условно оптическим волокном называют световоды, диаметр которых менее 0.5 мм.

(рис. 2)

Традиционные проводные линии, коаксиальные кабели, СВЧ волноводы - все они требуют дорогих и дефицитных материалов, по меньшей мере, меди. Для изготовления стекловолокна нужны окислы кремния - самые распространенные на Земле вещества. Волокна из прозрачных пластиков также почти не нуждаются в редких материалах. Таким образом, источники сырья для производства световолокон практически не ограничены. К этому следует добавить, что по диаметру оптические кабели существенно меньше металлических. Материалы оптических кабелей не подвержены коррозии и экологически безопасны.

Волоконно-оптические кабели не восприимчивы к помехам со стороны электромагнитных полей радиодиапазонов, и сами не создают таких помех. Поэтому в плане электромагнитной совместимости - это идеальные средства передачи информации. Столь же совершенны они и по электробезопасности, поскольку переносимые в них мощности очень малы.

Для того чтобы передать свет на некоторое расстояние необходимо сохранить его мощность. Снизить потери при его передаче можно, во-первых, обеспечив достаточно оптически прозрачную среду распространения, тем самым, сведя к минимуму поглощение волны, и, во-вторых, обеспечить правильную траекторию движения луча. Первая задача в настоящее время решается с помощью применения высокотехнологичных материалов, таких как чистое кварцевое стекло. Вторая задача решается с помощью закона оптики, описанного выше.

И сердцевина, и оболочка изготавливаются из стекла или пластика. Наиболее часто (вследствие лучших характеристик) используется оптоволокно типа "стекло-стекло", когда сердцевина и оболочка изготавливаются из особого кварцевого стекла. Понятно, что стекло, используемое для оболочки, должно иметь меньший показатель преломления, чем для сердцевины.

Показатель преломления стекла регулируется с помощью легирующих добавок. В оптических волокнах показатели преломления сердцевины и оболочки различаются на величину порядка 1%.

Затухание в световоде, то есть потеря мощности светового сигнала происходит, в основном, по двум причинам: поглощение и рассеивание.

Поглощение связано с возбуждением в материале световода электронных переходов и резонансов. В результате этого увеличивается тепловая энергия, накапливаемая в оптическом волокне. Поглощение зависит как от свойств материала, из которого изготавливается оптоволокно, так и от длины волны источника света.

Рассеивание меньше зависит от свойств материала и, в основном, определяется нарушением геометрической формы оптического волокна. Следствием этих нарушений является то, что часть лучей покидает оптоволокно. Интенсивность рассеивания зависит не только от качества материала, из которого изготавливается сердцевина волокна, но и от качества оболочки, так как часть сигнала, вопреки геометрической оптики, распространяется в ней (это явление связано с квантовой природой света). Бороться с этим можно за счет нанесения на оболочку поглощающего покрытия.

Жгуты для передачи изображения имеют (ориентировочно) следующие размеры:

Диаметр жгута,

мм

5-100

Диаметр единичного волокна

мкм

2-500

Длина жгута,

мм

100-5000

Принципиальная схема передачи изображения весьма проста: свет, отраженный от предмета, попадает на вход светопроводящего жгута, распространяется по нему и выходит с противоположного конца к приемнику излучения (например, глазу человека) (рис .3).

История

Принцип передачи света, используемый в волоконной оптике, был впервые продемонстрирован во времена королевы Виктории (1837—1901 гг.), но развитие современной волоконной технологии началось в 1950-х годах. Изобретение лазеров сделало возможным построение волоконно-оптических линий передачи, превосходящих по своим характеристикам традиционные проводные средства связи.

Одномодовые и многомодовые оптические волокна

Несмотря на огромное разнообразие оптоволоконных кабелей, волокна в них практически одинаковые. Более того, производителей самих волокон намного меньше (наиболее известны Corning, Lucent и Fujikura), чем производителей кабелей.

По типу конструкции, вернее по размеру серцевины, оптические волокна делятся на одномодовые (ОМ) и многомодовые (ММ). Строго говоря, употреблять эти понятия следует относительно конкретной используемой длины волны.

В случае многомодового волокна диаметр сердечника (обычно 50 или 62,5 мкм) почти на два порядка больше, чем длина световой волны. Это означает, что свет может распространяться в волокне по нескольким независимым путям (модам). При этом очевидно, что разные моды имеют разную длину, и сигнал на приемнике будет заметно "размазан" по времени.

Из-за этого хрестоматийный тип ступенчатых волокон (вариант 1), с постоянным коэффициентом преломления (постоянной плотностью) по всему сечению сердечника, уже давно не используется из-за большой модовой дисперсии.

На смену ему пришло градиентное волокно (вариант 2), которое имеет неравномерную плотность материала сердечника. На рисунке хорошо видно, что длины пути лучей сильно сокращены за счет сглаживания. Хотя лучи, проходящие дальше от оси световода, преодолевают большие расстояния, они при этом имеют большую скорость распространения. Происходит это из-за того, что плотность материала от центра к внешнему радиусу уменьшается по параболическому закону. А световая волна распространяется тем быстрее, чем меньше плотность среды.

В результате более длинные траектории компенсируются большей скоростью. При удачном подборе параметров, можно свести к минимуму разницу во времени распространения. Соответственно, межмодовая дисперсия градиентного волокна будет намного меньше, чем у волокна с постоянной плотностью сердечника.

Однако, как бы не были сбалансированы градиентные многомодовые волокна, полностью устранить эту проблему можно только при использовании волокон, имеющих достаточно малый диаметр сердечника. В которых, при соответствующей длине волны, будет распространяться один единственный луч.

Реально распространено волокно с диаметром сердечника 8 микрон, что достаточно близко к обычно используемой длине волны 1,3 мкм. Межчастотная дисперсия при неидеальном источнике излучения остается, но ее влияние на передачу сигнала в сотни раз меньше, чем межмодовой или материальной. Соответственно, и пропускная способность одномодового кабеля намного больше, чем многомодового.

Как это часто бывает, у более производительного типа волокна есть свои недостатки. В первую очередь, конечно, это более высокая стоимость, обусловленная стоимостью комплектующих, и требованиями к качеству монтажа.

Сравнение одномодовых и многомодовых технологий.

Параметры

Одномодовые

Многомодовые

Используемые длины волн

1,3 и 1,5 мкм

0,85 мкм, реже 1,3 мкм

Затухание, дБ/км.

0,4 - 0,5

1,0 - 3,0

Тип передатчика

лазер, реже светодиод

светодиод

Толщина сердечника.

8 мкм

50 или 62,5 мкм

Стоимость волокон и кабелей.

Около 70% от многомод

-

Средняя стоимость конвертера

в витую пару Fast Ethernet.

$300

$100

Дальность передачи Fast Ethernet.

около 20 км

до 2 км

Дальность передачи специально

разработанных устройств Fast Eth

более 100 км.

до 5 км

Возможная скорость передачи.

10 Гб, и более.

до1 Гб.на огранич.длине

Область применения.

Телекоммуникации

локальные сети

Потери в оптоволокне

Излучение, используемое в оптоволоконных системах, находится в инфракрасной части оптического спектра, в котором затухание при прохождении света через волокно сильно зависит от длины волны. Поэтому затухание или потери мощности должны измеряться для волн установленной длины для каждого типа волокна. Длина волны измеряется в нанометрах (нм)— и представляет собой расстояние между двумя циклами одной и той же волны. Количество потерянной оптической энергии, вызванное поглощением и рассеиванием излучения на определенной длине волны, выражается как коэффициент затухания в децибелах на километр (дБ/км).

Потери оптической мощности на волнах разной длины происходят в волокне из-за поглощения и рассеивания. Оптимальный режим эксплуатации волокна достигается на волнах определенной длины. Например, потери менее 1 дБ/км характерны для волокна многолучевого типа 50/125 мм, работающего при 1300 нм, и менее 3 дБ/км типичны для волокна этого же типа, работающего при 850 нм.

Эти два диапазона длин волн — 850 и 1300 нм являются самыми распространенными и наиболее часто используемыми сегодня для передачи сигнала по стекловолоконным кабелям. Для этих длин волн промышленностью выпускаются сегодня передатчики и приемники. Наилучшее качество имеет стекловолокно, работающее в однолучевом режиме при длине волны 1550 нм.(SMF-волокно)

Сва́рка опти́ческого волокна́

Сва́рка опти́ческого волокна́ — процесс соединения оптических волокон (жил оптического кабеля) с помощью высокотемпературной термической обработки. В настоящее время выполняется в автоматическом режиме специальными сварочными аппаратами.

Процесс сварки

- Разделка оптического кабеля. Обычно включает в себя снятие внешней изоляции кабеля, затем снятие изоляции отдельных модулей. В каждом модуле, как правило, находится 6-8 волокон.

- Очистка волокон от гидрофобного материала - чаще всего используется бесцветный, либо слегка окрашеный гель.

- На волокна одного из кабелей надеваются специальные гильзы — КДЗС (комплект для защиты соединений), состоящие из двух термоусадочных трубок и силового стержня.

- С концов волокон (2—3 см) снимается цветной лак и защитный слой, волокна протираются спиртом.

- Зачищенное волокно скалывается специальным прецизионным скалывателем. Плоскость скола волокон должна быть перпендикулярна оси волокна. Допустимое отклонение — до 1,5° на каждый скол.

- Волокна, предназначенные для сварки, укладываются в зажимы сварочного аппарата (V-образные канавки).

- Под микроскопом с помощью манипуляторов происходит их совмещение (юстировка). В современных сварочных аппаратах юстировка происходит автоматически.

- Электрическая дуга разогревает до установленной температуры концы волокон с микрозазором между ними, торцы волокон совмещаются микродоводкой держателя одного из волокон.

- Аппарат осуществляет проверку прочности соединения посредством механической деформации и оценивает затухание, вносимое стыком.

- КДЗС сдвигается оператором на место сварки и этот участок помещается в тепловую камеру, где происходит термоусадка КДЗС.

- Сваренные волокна укладываются в сплайс-пластину, кассету оптической муфты или кросса.