Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ1 к КР поМЖГ.doc
Скачиваний:
4
Добавлен:
10.07.2019
Размер:
23.94 Mб
Скачать

1. Функции τ, π и ε, характеризующие термодинамическое состояние газа.

Функция τ(λ) равняется отношению температуры в движущемся потоке Т к температуре адиабатически заторможенного потока в том же сечении Т*:

(2)

Функция π(λ) равняется отношению статического давления р движущегося газа к давлению р* адиабатически заторможенного потока в том же сечении:

(3)

Функция ε(λ) равняется отношению плотности ρ движущегося газа к плотности ρ* в адиабатически заторможенном потоке в том же сечении:

(4)

Перечисленные выше функции меняются от 1 до 0. Критические значения этих функций (при λ=1) будут следующими:

;

;

.

2. Функции q и y, характеризующие поток массы.

Функция q(λ) носит название приведенной плотности потока массы и равняется отношению плотности потока массы в произвольном сечении S изоэнтропического изоэнергетического потока массы М к плотности потока массы в критическом сечении:

(5)

Плотность потока массы максимальная в критическом сечении, поэтому функция q(λ) может иметь значения в пределах от 0 до 1, а в критическом сечении q(λ)= q(1)=qкр=1. Каждому значению λ кроме λ=1 соответствуют два значения аргумента – в дозвуковом (λ<1) и сверхзвуковом (λ>1) диапазоне скоростей потока.

Функция y(λ) равняется отношению функции q(λ) к функции π(λ):

(6)

Функции q(λ) и y(λ) наиболее часто используют в преобразованиях уравнения неразрывности.

3.Функции z, f и r , характеризующие поток импульса

Функция z(λ) называется приведенным полным импульсом и равняется отношению полного потока импульса в произвольном сечении изоэнтропического изоэнергетического потока к его значению в критическом сечении:

(7)

Каждому значению z<z(λмакс), кроме z=1, соответствуют два значения λ. Эти значения взаимообратны. Интересной особенностью этой функции является ее независимость от показателя адиабаты k.

Функция f(λ) называется приведенной плотностью потока импульса и равняется отношению плотности потока импульса в произвольном сечении изоэнтропического изоэнергетического потока к ее значению в заторможенном потоке, т.е. к р*.

(8)

Между функциями f, q и z имеется зависимость:

(8а)

Функция r(λ) равняется отношению статического импульса к полному в данном сечении:

(9)

Между функциями r, y и z существует зависимость:

(9а)

Приведены выше уравнения зависимости ГДФ от величины λ. Большинство функций позволяют решать обратную задачу нахождения величины λ по известной ГДФ. Но ряд функций, например q(λ), y(λ) являются трансцендентными, не имеющими прямого решения алгебраическими методами обратных задач. В «Пособии» предлагается метод нахождения λ по q(λ) методами MathCADа.

В журнале «Известия ВУЗ. Авиационная техника», №1,1972 г., стр.160-161 приведен метод решения задачи нахождения λ по q(λ). Авторы, Тунаков А.П. и Корабельников В.З. предложили решение этой задачи последовательными приближениями по следующей схеме.

Исходное уравнение предлагается решать в несколько шагов. В районе максимума функция аппроксимируется квадратичной параболой:

и . Это значение принимается за первое приближение λi . Дальнейшее решение найдено с использованием метода Ньютона :

. (10)

Авторами получена зависимость для последующих приближений по величине λ:

(11)

Число последовательных приближений, по утверждению авторов, не превышает трех, не считая нулевого, при задании точности приближения в 0,01%, если приведенная скорость λ не превышает 2.

Приведенная методика легко реализуется с помощью электронных таблиц EXCEL.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]