Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
еще.doc
Скачиваний:
1
Добавлен:
01.05.2019
Размер:
274.43 Кб
Скачать

52. Легочная вентиляция.

Альвеолярная вентиляция. Легочная вентиляция — это процесс передвижения вдыхаемого воздуха в альвеолы, в которых происходит газообмен с кровью.В процессе легочной вентиляции непрерывно обновляется газовый состав альвеолярного воздуха. Величина легочной вентиляции оп¬ределяется глубиной дыхания, или дыхательным объемом, и частотой дыхательных движений. Во время дыхательных движений легкие человека заполняются вдыхаемым воздухом, объем которого явля¬ется частью общего объема легких. Для количественного описания легочной вентиляции общую емкость легких разделили на несколько компонентов или объемов. Легочные объемы подразделяют на статические и динамические. Статические легочные объемы измеряют при завершенных дыха¬тельных движениях без лимитирования их скорости. Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение. Альвеолярная вентиляция. Обмену О2 и СО2 между атмосферным воздухом и внутренней средой организма способствует непрерывное обновление состава воз¬духа, заполняющего многочисленные альвеолы легких. Альвеолярная вентиляция является частью общей вентиляции легких, которая достигает альвеол. Альвеолярная вентиляция непосредственно влияет на содержание О2 и СО2 в альвеолярном воздухе и таким образом определяет характер газообмена между кровью и воздухом, запол¬няющим альвеолы. В каждой альвеоле состав воздуха определяется соотношением многих факторов. Во-первых, на его состав влияет величина анатомического мертвого пространства легких. Во-вторых, распределение воздуха по многочисленным воздухоносным ходам и альвеолам зависит от чисто физических причин. В-третьих, для обмена газов в легких решающее значение имеет соответствие вен¬тиляции альвеол и перфузии легочных капилляров. Альвеолярный воздух представлен смесью в основном О2, СО2 и N2. Кроме того, в альвеолярном воздухе содержатся водяные пары, которые также оказывают определенное парциальное давле¬ние. Различное содержание О2 и СО2 в альвеолярном и выдыхаемом из легких воздуха свидетельствует о том, что в воздухоносных путях лег¬ких от трахеи до альвеол существуют многочисленные градиенты кон¬центрации дыхательных газов, фронт которых может динамично сме¬щаться в ту или иную сторону в зависимости от вентиляции легких. Альвеолярную вентиляцию за один дыхательный цикл можно рассчитать по формуле: VA=f*(VT-Vd), где f — частота дыхания; Vt — дыхательный объем. В конечном счете величина альвеолярной вентиляции тем ниже, чем выше частота дыхания и меньше дыхательный объем.

53.Газообмен и транспорт газов. В организме газообмен О2 и СО2 через альвеолярно-капиллярную мембрану происходит с помощью диффузии. Диффузия О2 и СО2 через аэрогематический барьер(барьер между альвеолярным воздухом и кровью) зависит от следующих факторов: вентиляции дыхательных путей; смешивания и диффузии газов в альвеолярных протоках и альвеолах; смешивания и диффузии газов через аэрогематический барьер, мембрану эритроцитов и плазму альвеолярных капилляров; химической реакции газов с различными компонентами крови, и наконец от перфузии кровью легочных капилляров. Диффузия газов через альвеолярно-капиллярную мембрану лег¬ких осуществляется в два этапа. На первом этапе диффузионный перенос газов происходит по концентрационному градиенту через тонкий аэрогематический барьер, на втором — происходит связы¬вание газов в крови. После преодоления аэрогематического барьера газы диффундируют через плазму крови в эритроциты. Транспорт О2 осуществляется в физически растворенном и хи¬мически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в О2. Наиболее оптимальным является механизм транспорта О2 в химически свя¬занном виде. Согласно закону Фика, газообмен О2 между альвеолярным воздухом и кровью происходит благодаря наличию концентраци¬онного градиента О2 между этими средами. В альвеолах легких парциальное давление О2 составляет 13,3 кПа, или 100 мм рт.ст., а в притекающей к легким венозной крови парциальное напряжение О2 составляет примерно 5,3 кПа, или 40 мм рт.ст. Транспорт О2 начинается в капиллярах легких после его хими¬ческого связывания с гемоглобином.

Продолжение 53. Легочная вентиляция.

Гемоглобин (Нb) способен избирательно связывать О2 и образо¬вывать оксигемоглобин (НbО2) в зоне высокой концентрации О2 в легких и освобождать молекулярный О2 в области пониженного содержания О2 в тканях. При этом свойства гемоглобина не изме¬няются и он может выполнять свою функцию на протяжении дли-тельного времени. Гемоглобин переносит О2 от легких к тканям. . Сродство гемоглобина к кислороду регулируется важнейшими факторами метаболизма тканей: Ро2 pH, температурой и внутриклеточной концентрацией 2,3-дифосфоглицерата. Оксид углерода (II) — СО, способен соединяться с атомом железа гемоглобина, изменяя его свойства и реакцию с О2. Очень высокое сродство СО к Нb (в 200 раз выше, чем у О2) блокируют один или более атомов железа в молекуле гема, изменяя сродство Нb к О2. Обмен О2 между кровью капилляров и клетками тканей также осуществляется путем диффузии. Газообмен и транспорт со2. Поступление СО2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из СО2, растворенного в плазме крови (5—10%); 2) из гидрокарбонатов (80—90%); 3) из карбаминовых соединений эритроцитов (5—15%), которые способны диссоцииро¬вать. В венозной крови, притекающей к капиллярам легких, напря¬жение СО2 составляет в среднем 46 мм рт.ст. (6,1 кПа), а в альвеолярном воздухе парциальное давление СО2 равно в среднем 40 мм рт.ст. (5,3 кПа), что обеспечивает диффузию СО2 из плазмы крови в альвеолы легких по концентрационному градиенту. Молекулярный СО2 проходит аэрогематический барьер, а затем поступает в альвеолы. Обмен СО2 между клетками тканей с кровью тканевых капилляров осуществляется с помощью следующих реакций: 1) обмена С1- и НСО3- через мембрану эрит-роцита; 2) образования угольной кислоты из гидрокарбонатов; 3) диссоциации угольной кислоты и гидрокарбонатов.