Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Определители.docx
Скачиваний:
6
Добавлен:
27.04.2019
Размер:
114.5 Кб
Скачать
  1. Система двух линейных уравнений с двумя неизвестными. Совместные и несовместные системы.

Системы двух линейных уравнений с двумя неизвестными имеют вид: 

где  a,  b,  c,  d,  e,  f – заданные числа;  x,  y – неизвестные. Числа   a,  b,  d,   – коэффициенты при неизвестныхc, f – свободные члены. Решение этой системы уравнений может быть найдено двумя основными  методами.

Метод подстановки. 

1)  Из одного уравнения выражаем одно из неизвестных, например  x, через коэффициенты и другое неизвестное  y:

                                                 x = ( c – by ) / a .                             (2)

2)  Подставляем во второе уравнение вместо x :

                                           d ( c – by ) / a + ey = f .

3)  Решая последнее уравнение, находим  y :

                                                  y = ( af – cd ) / ( ae – bd ).

4)  Подставляем это значение вместо y  в выражение (2) :

                                                 x = ( ce  bf ) / ( ae  bd ) .

Сложение или вычитание. Этот метод состоит в следующем.            

1)  Умножаем обе части 1-го уравнения системы (1) на  (– d ), а обе части 2-го уравнения на  а  и складываем их:

                                          

    Отсюда получаем: y = ( af  cd ) / ( ae  bd ).  

2)  Подставляем найденное для  y  значение в любое уравнение системы (1):  

                                 ax + b( af – cd ) / ( ae – bd ) = c.

3)  Находим другое неизвестное:   x = ( ce  bf ) / ( ae  bd ).

Совместные и несовместные системы.

Теорема: Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

RgA = RgA*.

Очевидно, что система (1) может быть записана в виде:

x1 + x2 + … + xn

Доказательство.

1) Если решение существует, то столбец свободных членов есть линейная комбинация столбцов матрицы А, а значит добавление этого столбца в матрицу, т.е. переход АА* не изменяют ранга.

2) Если RgA = RgA*, то это означает, что они имеют один и тот же базисный минор. Столбец свободных членов – линейная комбинация столбцов базисного минора, те верна запись, приведенная выше.

Пример. Определить совместность системы линейных уравнений.

А = ; = 2 + 12 = 14  0; RgA = 2;

A* =

RgA* = 2.

Система совместна. Решения: x1 = 1; x2 =1/2.

Пример. Определить совместность системы линейных уравнений:

A =

~ . RgA = 2.

A* = RgA* = 3.

Система несовместна.

  1. Матрицы коэффициентов системы. Определитель 2-ого порядка.

Матрицы коэффициентов системы.

Систему из m уравнений с n неизвестными

можно представить в матричном виде

и тогда всю систему можно записать так:

AX = B,

где A имеет смысл таблицы коэффициентов aij системы уравнений.

Если m = n и матрица A невырожденная, то решение этого уравнения состоит в нахождении обратной матрицы A − 1, поскольку умножив обе части уравнения на эту матрицу слева

A − 1AX = A − 1B

A − 1A — превращается в E (единичную матрицу). И это даёт возможность получить столбец корней уравнений

X = A − 1B.

Все правила, по которым проводятся операции над матрицами, выводятся из операций над системами уравнений.

Определитель 2-ого порядка.

Число   называется определителем второго порядка, соответствующего таблице (1). Этот определитель обозначается символом  ; соотвественно имеем

. (2).