Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_entropia_i_informatsia.doc
Скачиваний:
10
Добавлен:
27.04.2019
Размер:
269.82 Кб
Скачать

14. Энтропия и вероятность

В основе термодинамики лежит различие между двумя типами процессов — обратимыми и необратимыми.

Понятие энтропии позволяет отличать в случае изолированных систем обратимые процессы (энтропия максимальна и постоянна) от необратимых процессов (энтропия возрастает).

Благодаря работам великого австрийского физика Людвига Больцмана, это отличие было сведено с макроскопического уровня на микроскопический. Состояние макроскопического тела (системы), заданное с помощью макропараметров (параметров, которые могут быть измерены макроприборами — давлением, температурой, объемом и другими макроскопическими величинами, характеризующими систему в целом), называют макросостоянием.

Состояние макроскопического тела, охарактеризованное настолько подробно, что оказываются заданными состояния всех образующих тело молекул, называется микросостоянием.

Всякое макросостояние может быть осуществлено различными способами, каждому из которых соответствует некоторое микросостояние системы. Число различных микросостояний, соответствующих данному макросостоянию, называется статистическим весом W, или термодинамической вероятностью макросостояния.

Больцман первым увидел связь между энтропией и вероятностью. При этом он понял, что энтропия должна выражаться через логарифм вероятности. Ибо если мы рассмотрим две подсистемы одной системы, каждая из которых характеризуется статистическим весом, соответственно W1 и W2, полный статистический вес системы равен произведению статистических весов подсистем:в то время как энтропия системы S равна сумме энтропии подсистем:

Больцман связал понятие энтропии S с InW. В 1906 году Макс Планк написал формулу, выражающую основную мысль Больцмана об интерпретации энтропии как логарифма вероятности состояния системы:

S = k lnW

Коэффициент пропорциональности к был рассчитан Планком и назван постоянной Больцмана.

Идея Больцмана о вероятностном поведении отдельных молекул явилась развитием нового подхода при описании систем, состоящих из огромного числа частиц, впервые развитого Максвеллом. Невозможно определить точно координаты и скорости всех молекул макроскопического тела одновременно в данный момент времени. Задачу следует ставить иначе, а именно — попытаться найти вероятность того, что данная молекула обладает таким-то значением скорости. Максвелл ввел для описания случайного характера поведения молекул понятие вероятности, вероятностный (статистический закон). В 1878 году Больцман применил понятие вероятности, введенное Максвеллом, и показал, что второй закон термодинамики также является следствием более глубоких статистических законов поведения большой совокупности частиц.

15.Связь массы и энергии

Важнейшее следствие теории относительности, играющее одну из главных ролей в ядерной физике и физике элементарных частиц - универсальная связь между энергией и массой.

Связь между энергией и массой неизбежно следует из закона сохранения энергии и того факта, что масса тела зависит от скорости его движения. Это видно из простого примера. При нагревании газа в сосуде ему сообщается определенная энергия. Скорость хаотического теплового движения молекул зависит от температуры, и увеличивается с нагреванием газа. Увеличение скорости движения молекул согласно формуле означает увеличение массы всех молекул. Следовательно, масса газа в сосуде увеличивается при увеличении его внутренней энергии. Между массой газа и его энергией существует связь.

Формула Эйнштейна. С помощью» теории относительности Эйнштейн установил замечательную по своей простоте и общности формулу связи между энергией и массой: E=mc2

Энергия тела или системы тел равна массе, умноженной на квадрат скорости света.

Если изменяется энергия системы, то изменяется и ее масса.

Так как коэффициент очень мал, то заметные изменения массы возможны лишь при очень больших изменениях энергии. При химических реакциях или при нагревании в обычных условиях изменения энергии настолько малы, что соответствующие изменения масс не удается обнаружить на опыте. Лишь при превращениях атомных ядер и элементарных частиц изменения энергии оказываются настолько большими, что изменение массы уже заметно.