Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_entropia_i_informatsia.doc
Скачиваний:
9
Добавлен:
27.04.2019
Размер:
269.82 Кб
Скачать

1.Энтропия и информация

Информация и энтропия характеризуют сложную систему с точки зрения упорядоченности и хаоса, причем если информация — мера упорядоченности, то энтропия — мера беспорядка. Эта мера простирается от максимальной энтропии, т.е. хаоса, полной неопределенности до высшего уровня порядка.

Если система эволюционирует в направлении упорядоченности, то ее энтропия уменьшается. Итак, уровень организованности определяется уровнем информации, на котором находится система. Следовательно, количество информации, необходимое для перехода из одного уровня организации в другой (качественно более высокий), можно определить как разность энтропии. Уменьшение энтропии происходит в результате информационно-управленческого процесса за счет обмена с внешней средой веществом, энергией и информацией. Человек постоянно борется с энтропии ей информацией: «Мы плывем вверх по течению, борясь с огромным потоком дезорганизованности, которая в соответствии со вторым законом термодинамики стремится все свести к тепловой смерти — всеобщему равновесию и одинаковости, т.е. энтропии. В мире, где энтропия в целом стремится к возрастанию, существуют местные временные островки уменьшающейся энтропии — это области прогресса».

2.принцип неопределенности. Понятие физического вакуума

Физический вакуум. Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы.Принцип неопределённости Гейзенберга  — фундаментальное неравенство, устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики. Вернер Карл Гейзенберг (1901-1976) — немецкий физик, лауреат Нобелевской премии по физике (1932).Краткий обзор. Соотношения неопределённостей Гейзенберга являются теоретическим пределом точности одновременных измерений двух некоммутирующих наблюдаемых. Соответственно, любая частица (в общем смысле, например несущая электрический заряд) не может быть описана одновременно как «классическая точечная частица» и как волна. Принцип неопределённости верен в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим. Соотношения неопределённостей не ограничивают точность измерения величины, если ее оператор коммутирует сам с собой в разные моменты времени. Например, соотношение неопределённостей для свободной частицы не препятствуют точному измерению ее импульса, но не позволяет точно измерить ее координату

3. Определение вероятности. Основные законы.

Статистические и динамические закономерности - две осн. формы закономерной связи явлений, которые отличаются по характеру вытекающих из них предсказаний. В законах динамич. типа предсказания имеют точно определённый, однозначный характер. Так, в механике, если известен закон движения тела и заданы его координаты и скорость, то по ним можно точно определить положение и скорость движения тела в любой др. момент времени. Динамич. законы характеризуют поведение относительно изолированных систем, состоящих из небольшого числа элементов и в которых можно абстрагироваться от целого ряда случайных факторов.

 В статистич. законах предсказания носят не достоверный, а лишь вероятностный характер. Подобный характер предсказаний обусловлен действием множества случайных факторов, которые имеют место в статистич. коллективах или массовых событиях (напр., большого числа молекул в газе, особей в биологич. популяциях, людей в социальных коллективах). Статистич. закономерность возникает как результат взаимодействия большого числа элементов, составляющих коллектив, и поэтому характеризует не столько поведение отд. элемента, сколько коллектива в целом. Необходимость, проявляющаяся в статистич. законах, возникает вследствие взаимной компенсации и уравновешивания множества случайных факторов.

Статистич. законы хотя и не дают однозначных и достоверных предсказаний, тем не менее являются единственно возможными при исследовании массовых явлений случайного характера.

 С помощью динамич. законов обычно формулируются каузальные (причинные) связи явлений. Рассматривая одно явление как причину другого, мы вырываем их из всеобщей связи, изолируем друг от друга и тем самым значительно упрощаем и идеализируем действительность. Подобную идеализацию легче осуществить в механике, астрономии, классич. физике, которые имеют дело с точно известными силами и законами движения тел под их воздействием. В более сложных ситуациях приходится учитывать воздействие множества случай-ных факторов и обращаться к статистич. законам.Вероятность (вероятностная мера) — Численная мера степени объективной возможности наступления случайного события. Оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента. Согласно определению П. Лапласа мерой вероятности называется дробь, числитель которой есть число всех благоприятных случаев, а знаменатель — число всех равновозможных случаев.