Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вышка.doc
Скачиваний:
6
Добавлен:
22.04.2019
Размер:
1.83 Mб
Скачать

33. Применение формулы Тейлора к приблизительным вычислениям

Пусть функция f(x, y) дифференцируема в точке (х, у). Найдем полное приращение этой функции:

  Если подставить в эту формулу выражение

то получим приближенную формулу:

34. Условие монотонности функции на промежутке

Моното́нная фу́нкция — это функция, приращение которой не меняет знака, то есть либо всегда неотрицательно, либо всегда неположительно. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной.

  • (Критерий монотонности функции, имеющей производную на интервале) Пусть функция непрерывна на (a,b), и имеет в каждой точке производную f'(x). Тогда

f возрастает на (a,b) тогда и только тогда, когда

f убывает на (a,b) тогда и только тогда, когда

  • (Достаточное условие строгой монотонности функции, имеющей производную на интервале) Пусть функция непрерывна на (a,b), и имеет в каждой точке производную f'(x). Тогда

если то f строго возрастает на (a,b);

если то f строго убывает на (a,b).

Обратное, вообще говоря, неверно. Производная строго монотонной функции может обращаться в ноль. Однако, множество точек, где производная не равна нулю, должно быть плотно на интервале (a,b). Точнее имеет место

  • (Критерий строгой монотонности функции, имеющей производную на интервале) Пусть и всюду на интервале определена производная f'(x). Тогда f строго возрастает на интервале (a,b) тогда и только тогда, когда выполнены следующие два условия:

Аналогично, f строго убывает на интервале (a,b) тогда и только тогда, когда выполнены следующие два условия:

35. Условие экстремума функции в точке

Пусть функция определена в некоторой окрестности , , некоторой точки своей области определения. Точка называется точкой локального максимума, если в некоторой такой окрестности выполняется неравенство ( ), и точкой локального минимума, если .     

Понятия локальный максимум и локальный минимум объединяются термином локальный экстремум.

Следующая теорема даёт необходимое условие того, чтобы точка была точкой локального экстремума функции .

Если точка  -- это точка локального экстремума функции , и существует производная в этой точке , то .

Доказательство этой теоремы сразу же следует из теоремы Ферма (см. гл. 5).    

Утверждение теоремы можно переформулировать так:

если функция имеет локальный экстремум в точке , то либо 1) , либо 2) производная не существует.

Точка называется критической точкой функции , если непрерывна в этой точке и либо , либо не существует. В первом случае (то есть при ) точка называется также стационарной точкой функции .

Итак, локальный экстремум функции может наблюдаться лишь в одной из критических точек этой функции.