Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты по электротехнике.docx
Скачиваний:
13
Добавлен:
22.04.2019
Размер:
2.24 Mб
Скачать

2)Методы расчета электрических цепей синусоидального тока.)

Рассмотренные методы расчета электрических цепей – непосредственно по законам Кирхгофа, методы контурных токов и узловых потенциалов – позволяют принципиально рассчитать любую схему. Однако их применение без использования введенных ранее топологических матриц рационально для относительно простых схем. Использование матричных методов расчета позволяет формализовать процесс составления уравнений электромагнитного баланса цепи, а также упорядочить ввод данных в ЭВМ, что особенно существенно при расчете сложных разветвленных схем.

П ереходя к матричным методам расчета цепей, запишем закон Ома в матричной форме.

Пусть имеем схему по рис. 1, где  - источник тока. В соответствии с рассмотренным нами ранее законом Ома для участка цепи с ЭДС для данной схемы можно записать:

.

(1)

 Однако, для дальнейших выкладок будет удобнеепредставить ток  как сумму токов  k-й ветви и источника тока, т.е.:

.

(2)

 Подставив (2) в (1), получим:

(3)

 Формула (3) представляет собой аналитическое выражение закона Ома для участка цепи с источниками ЭДС и тока (обобщенной ветви).

Соотношение (3) запишем для всех n ветвей схемы в виде матричного равенства

или

,

(4)

 где Z – диагональная квадратная (размерностью n x n) матрица сопротивлений ветвей, все элементы которой (взаимную индуктивность не учитываем), за исключением элементов главной диагонали, равны нулю.

Соотношение (4) представляет собой матричную запись закона Ома.

Если   обе части   равенства  (4)  умножить  слева  на  контурную матрицуВ  и  учесть второй закон Кирхгофа, согласно которому

,

(5)

 то

(6)

 то есть получили новую запись в матричной форме второго закона Кирхгофа.

3)Приложение прямого напряжения к переходу

p-n-Перехо́д (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-Переход является основой для полупроводниковых диодов, триодов и других электронных элементов с нелинейной вольт-амперной характеристикой.

Энергетическая диаграмма p-n-перехода. a) Состояние равновесия b) При приложенном прямом напряжении c) При приложенном обратном напряжении.

Области пространственного заряда

В полупроводнике p-типа концентрация дырок намного превышает концентрацию электронов. В полупроводнике n-типа концентрация электронов намного превышает концентрацию дырок. Если между двумя такими полупроводниками установить контакт, то возникнет диффузионный ток — носители заряда, хаотично двигаясь, перетекают из той области, где их больше, в ту область, где их меньше. При такой диффузии электроны и дырки переносят с собой заряд. Как следствие, область на границе станет заряженной, и область в полупроводнике p-типа, которая примыкает к границе раздела, получит дополнительный отрицательный заряд, приносимый электронами, а пограничная область в полупроводнике n-типа получит положительный заряд, приносимый дырками. Таким образом, граница раздела будет окружена двумя областями пространственного заряда противоположного знака.

Электрическое поле, возникающее вследствие образования областей пространственного заряда, вызывает дрейфовый ток в направлении, противоположном диффузионному току. В конце концов, между диффузионным и дрейфовым токами устанавливается динамическое равновесие, и перетекание зарядов прекращается.

Если приложить внешнее напряжение так, чтобы созданное им электрическое поле было направленным противоположно направлению электрического поля между областями пространственного заряда, то динамическое равновесие нарушается, и диффузионный ток преобладает над дрейфовым током, быстро нарастая с повышением напряжения. Такое подключение напряжения к p-n-переходу называется прямым смещением.

\\Если же внешнее напряжение приложено так, чтобы созданное им поле было одного направления с полем между областями пространственного заряда, то это приведет лишь к увеличению областей пространственного заряда, и ток через p-n-переход не идёт. Такое подключение напряжения к p-n-переходу называется обратным смещением.\\

Так как прямое напряжение вызывает встречное движение дырок и электронов, то их концентрация в приконтактных областях возрастает, что приводит к уменьшению ширины запирающего слоя. Зависимость тока диффузии от прямого напряжения имеет вид

                                                                                                         (3.30)

Так же как и для обратного включения, тепловой ток не будет зависеть от напряжения. Полный ток через p-n-переход равен разности диффузионного и теплового:

                                                                        (3.31)

Формулу (3.31) можно считать универсальной, если принять, что внешнее напряжение в нее входит со своим знаком (прямое направление положительное, обратное — отрицательное).

При прямом смещении на р-n-переходе экспоненциальный член быстро возрастает и единицей в фигурных скобках можно пренебречь, поэтому I=Iдиф. При обратном смещении на р-n-переходе экспоненциальный член стремится к нулю и ток через p-n-переход равен тепловому току I0.

Зависимость тока I от внешнего напряжения, т. е. теоретическая вольт-амперная характеристика p-n-перехода, соответствующая формуле (3.31), показана на рис. 3.2.

На вольт-амперную характеристику сильно влияет температура. С изменением температуры смещается как обратная, так и прямая ветвь характеристики. Зависимость от температуры обратной ветви вольт-амперной характеристики определяется температурной зависимостью тока I0.

При повышении температуры увеличивается число пар электрон — дырка, возникающих в p- и n-областях вследствие теплового движения атомов. Это приводит к увеличению теплового токаI p-n-перехода.

Зависимость от температуры прямой ветви вольт-амперной характеристики при малых прямых напряжениях согласно выражению (3.31) определяется изменениями тока I0 и показателя экспоненты. Прямой ток через p-n-переход возрастает с увеличением температуры вследствие увеличения тока I0 . Но при больших прямых токах основную роль начинает играть проводимость полупроводникового кристалла, которая уменьшается с увеличением температуры, что приводит к снижению прямого тока.