Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
128101_057FA_shpory_po_fizike_optika_.doc
Скачиваний:
14
Добавлен:
14.04.2019
Размер:
1.51 Mб
Скачать

9. Принцип Гюйгенса-Френеля.

Качественно явление дифракции света объясняется на основе принципа Гюйгенса: каждая точка пространства до которой дошло световое возбуждение становится источником вторичных волн, распространяющихся в данной среде с характерной для нее фазовой скоростью v. Геометрическоее место точек, до которого доходит световое возбуждение за один и тот же промежуоток времени носит название фронта волны или волновой поверхности. Огибающая вторичных волн – есть положение волнового фронта в последующий момент времени. Пусть расространяется волна и ее волновой фронт в некоторый момент времени есть поверхность Ф. Такое распространение показывает, что волновой фронт загибается на концах, также как и лучи (нормаль к волновой поверхности). Количественный расчет дифракционного явления был предпринят: Френелем, который исходил из ряда положений, принимающихся без доказательства и составляющих принцип Гюйгенса-Френеля. Эти положения сводятся к следующему: 1) следуя Гюйгенсу Френель предложил заменить реально действующий источник излучения эквивалентной ему совокупностью вторичных (виртуальных) источников и испускаемых ими торичных волн. 1) В качестве вторичного источника выступают бесконечно малые участки поверхности S замкнутой вокруг So. Выбор поверхности S произволен, но чаще всего поверхность S совпадает с нулевой поверхностью. 2) согласно Френелю все вториные источники когерентны между собой и испускают когерентные волны, в любой точке вне S, волны, идущие от So представляют собой интерференцию вторичных волн. Для поверхности S совпадающей с волновым фронтом все вторичные испускаемые колебания в одной фазе. 3) для поверхности S, совпадающей с волновой поверхностью разные по площади вторичные источники испускают равное по мощности вторичное излучение. dS1=dS2=dSn; dP1=dP2=dPn (P-мощность). 4) Каждый вторичный источник, излучает направление нормали к волновой поверхности в данной точке. Интенсивность излучения (амплитуда) в точке p тем меньше, чем больше угол α

между внешней нормалью и радиус-вектором проведенным

в точке наблюдения. Фаза результирующего колебания зависит тоже от r (в). 5) если чсть волновой поверхности перекрыто непразрачным экраном, то световое воздействие в точке наблюдателя осуществляется открытыми вторичными источниками. Для нахождения результирующего колебания в точке P, необходимо просуммировать вторичные источники по их амплитуде и фазам. Существует приближенный метод расчета интерференции вторичных волн – метод зон Френеля

10. Метод зон Френеля.

Френель предложил объединил симметричные точки световой волны в зоны выбирая конфигурацию и размеры зоны такие что разность хода лучей от краев 2-х соседних зон от точки наблюдений была бы равна /2 и следовательно от краев 2-х соседних волн приход. в точку наблюдения в противофазе и при наложении др. на др. ослабевают.

Обозначим ч/з A1 амплитуду колебаний в точке P даваемым всеми точками источниками находим внутри 1-й зоны Френеля. Ясно что A1> A2> A3

Результат амплитуды колебаний в т.P даваемое всеми зонами Френеля будет A=A1-A2+A3-A4…, A=A1/2+(A1/2-A2+ A3/2)+(A3/2-A4+ A5/2)+…=> A=A1/2. Видно что в том случае, если открыты все зоны Френеля то амплитуда колебаний = половине амплитуды колебаний даваемой 1-й зоной Френеля.