Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
128101_057FA_shpory_po_fizike_optika_.doc
Скачиваний:
14
Добавлен:
14.04.2019
Размер:
1.51 Mб
Скачать

5. Методы наблюдения интерференции света. Зеркала Френеля.

Существуют несколько методов наблюдения интерференции света. Примерами являются метод Юнга и зеркал Френеля.

Зеркала Френеля

Два плоских соприкасающихся зеркала ОМ и ON располагаются так, что их отражающие поверхности образуют угол, близкий к π (рис.2.5). Соответственно угол φ на рисунке очень мал.

Параллельно линии пересечения зеркал О на расстоянии r от нее помещается прямолинейный источник света S (например, узкая светящаяся щель). Зеркала отбрасывают на экран Э две цилиндрические когерентные волны, распространяющиеся так, как если бы они исходили из мнимых источников S1 и S2.

Непрозрачный экран Э1 преграждает свету путь от источника S к экрану Э.

Луч OQ представляет собой отражение луча SO от зеркала ОМ, луч ОР — отражение луча SO от зеркала ON. Легко сообразить, что угол между лучами ОР и OQ равен 2π. Поскольку S и S1 расположены относительно ОМ симметрично, длина отрезка OS1 равна OS, т.е. r. Аналогичные рассуждения приводят к тому же результату для отрезка OS2. Таким образом, расстояние между источниками S1 и S2 равно:

Из рис.2.5 видно, что Следовательно, где b — расстояние от линии пересечения зеркал О до экрана Э.Подставив найденные нами значения d и l при рассмотрении интерференции (2.28),получим ширину интерференционной полосы:

Область перекрытия волн PQ имеет протяженность Разделив эту длину на ширину полосы Δх, найдем максимальное число интерференционных полос, которое можно наблюдать с помощью зеркал Френеля при данных параметрах схемы:

7. Интерференция в тонких пленках.

Я вление интерференции в тонких пленках широко наблюдается в естественных условиях: радужная окраска мыльных пузырей, нефтяных пленок, масляных пятен на поверхности воды, крыльев бабочки.

В этом случае интерферируют лучи, полученные от отражения падающего луча от верхней и нижней поверхностей. Оптическая разность хода между лучами не велика из-за малой толщины пленки и поэтому они принадлежат одному цугу, а значит когерентны.

Падающая волна частично отражается от поверхности пленки (луч 1) и частично преломляется (луч OC). Преломленная волна, достигнув нижней поверхности пленки, отражается от нее (луч CB). Луч CB затем преломляется на верхней поверхности (луч 2). Лучи 1 и 2 с помощью линзы собираются на экране в точке P и интерферируют. Результат интерференции зависит от оптической разности хода между лучами 1 и 2.

Оптическая разность хода между двумя интерферирующими лучами от точки O до плоскости AB равна: , где - показатель преломления пленки, член обусловлен потерей полуволны при отражении света от границы раздела с оптически более плотной средой. Расстояния OA, OC и CB находится геометрическим методом ( , рис.1): , .

8. Ннтерференционные приборы и их применение.

Интерференция применяется в сверхточных претензионных измерениях. Используются приборы – интерферометры, в их основе лежит явление интерференции. 2-ая область – контроль за чистотой обработки поверхности высокого класса точности. 3) для определения коэффициента линейности расширения твердого тела – делатометр. 4) просветление оптики.