Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
moya_kursovaya_po_mzhg.doc
Скачиваний:
20
Добавлен:
10.12.2018
Размер:
965.12 Кб
Скачать

4.1 Расчёт величин газового потока для варианта 2 (скачок уплотнения в сечении а)

Сечение 0:

.

Сечение k:

.

Сечение 1:

.

Сечение 2:

Сечение 3

Сечение у:

.

Сечение 4:

.

Сечение 5:

.

Сечение а:

.

Сечение аза:

.

5 Определение значений полных импульсов для вариантов 1-5 в сечениях 0, k, y, a

Вариант 1:

Вариант 2:

Вариант 3:

Вариант 4:

Вариант 5:

6 Расчёт значений сил и тяги для вариантов 1-5 в сечениях 0, k, y, a

Вариант 1

;

;

;

;

;

;

.

Вариант 2

;

;

;

;

;

;

.

Вариант 3

;

;

;

;

;

;

.

Вариант 4

;

;

;

;

;

;

.

Вариант 5

;

;

;

;

;

;

.

Заключение

В данной работе проведены расчёты газового потока в камере ракетного двигателя на сверхзвуковых и дозвуковых режимах, со скачками уплотнения и без скачков уплотнения.

В результате расчётов получили значения основных параметров газового потока, значения скоростей газового потока, величину расхода по сечениям камеры, значения сил взаимодействия потока со стенками камеры и тягу двигателя.

Проанализируем полученные данные (прямая задача):

1) температура торможения по длине сопла остаётся постоянной для всех вариантов расчёта.

Статическая температура: в 1 варианте уменьшается плавно и достигает минимального значения (Tа = 2118,207К); во 2, 3 и 4 вариантах температура скачкообразно возрастает из-за наличия прямого скачка уплотнения (ПСУ) и приближается к температуре торможения (T* = 3395 К); в 5 варианте температура падает, затем в сечении y начинает расти, приближаясь к температуре торможения;

2) давление торможения по длине сопла остаётся постоянным для 1 и 5 вариантов расчёта. Во 2, 3 и 4 вариантах скачкообразно падает из-за ПСУ, минимальное значение достигается во втором варианте (p* = 6,859197 МПа).

Статическое давление: в 1 варианте уменьшается плавно и достигает минимума (p = 0,87216 МПа); во 2, 3 и 4 вариантах скачкообразно возрастает и стремится к давлению торможения; в 5 варианте давление падает, затем в сечении y начинает расти, приближаясь к давлению торможения;

3) плотность торможения по длине сопла остаётся постоянной для 1 и 5 вариантов расчёта. Во 2, 3 и 4 вариантах скачкообразно падает из-за ПСУ; минимальное значение достигается во 2 варианте (ρ = 1,524418 кг/м3).

Плотность: во 2, 3 и 4 вариантах скачкообразно возрастает из-за ПСУ и приближается к плотности заторможенного потока; в 5 варианте плотность падает до сечения y, а затем плавно возрастает и приближается к давлению заторможенного потока;

4) скорость потока в 1 варианте плавно увеличивается и достигает максимального значения (c = 2097,12 м/с); во 2, 3 и 4 вариантах скорость убывает скачкообразно из-за наличия ПСУ; в 5 варианте скорость растёт до сечения y, а затем убывает.

Скорость истечения газа из выходного сечения в 1, 2 вариантах остается постоянной, а в 3, 4, 5 вариантах убывает;

5) силы, действующие в канале, остаются постоянными в 1 и 2 вариантах, затем в 3, 4 и 5 вариантах возрастают. Тяга двигателя в 1, 2 вариантах резко убывает, в вариантах 3, 4, 5 убывает плавно.

На основании полученных результатов были построены графические зависимости основных параметров газового потока по длине камеры, изменение скорости газового потока по длине камеры и в выходном сечении, сил взаимодействия и тяги двигателя.

Из полученных графиков видно резкое изменение параметров газового потока на нерасчётных режимах при наличии скачков уплотнения. Нерасчётные режимы являются нежелательными для сверхзвукового сопла.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]