Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
051467_2E9F7_kichigina_r_s_haustova_n_s_kontrol....doc
Скачиваний:
19
Добавлен:
09.12.2018
Размер:
3.45 Mб
Скачать

Контрольные варианты к задаче 20

Вычислить пределы функций:

1.

.

2.

.

3.

.

4.

.

5.

.

6.

.

7.

.

8.

.

9.

.

10.

.

11.

.

12.

.

13.

.

14.

.

15.

.

16.

.

17.

.

18.

.

19.

.

20.

.

21.

.

22.

.

23.

.

24.

.

25.

.

26.

.

27.

.

28.

.

29.

.

30.

.

З а д а ч а 21

Пример 23

Вычислить . Это неопределенность вида .

Так как .

Найдем, используя свойство непрерывности логарифмической функции:

Контрольные варианты к задаче 21

Вычислить пределы функции:

1. .

2. .

3. .

4. .

5. .

6. .

7. .

8. .

9. .

10. .

11. .

12. .

13. .

14. .

15. .

16. .

17. .

18. .

19. .

20. .

21. .

22. .

23. .

24. .

25. .

26. .

27. .

28. .

29. .

30. .

З а д а ч а 22

Пример 24

Вычислить .

Если представить предельное значение переменной х, то получим неопределенность вида . Используя вторую форму второго замечательного предела

, введем новую переменную . Тогда , если . Из замены . Тогда

Контрольные варианты к задаче 22

Вычислить пределы функций

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

З а д а ч а 23

Пример 25

.

При подстановке предельного значения аргумента возникает неопределенность . Приведение к общему знаменателю сводит эту неопределенность к

неопределенности или .

.