Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
структурно-функц единицы Аристархова гр. 1101.doc
Скачиваний:
3
Добавлен:
05.12.2018
Размер:
159.23 Кб
Скачать

Печеночная долька

Структурно-функциональной единицей печени является долька печени. В печени человека ~500.000 печёночных долек. Долька имеет форму призмы с максимальным диаметром поперечного сечения ~1,0 ÷ 2,5 мм. Пространство между дольками заполнено небольшой массой соединительной ткани. В ней располагаются междольковые жёлчные протоки, артерии и вены. Обычно междольковые артерия, вена и проток расположены рядом, образуют печёночную триаду.

Дольки печени построены из соединяющихся друг с другом печёночных пластинок («балок») в виде сдвоенных радиально направленных рядов печёночных клеток, гепатоцитов. В центре каждой дольки находится центральная вена. Внутренние концы печёночных пластинок обращены к центральной вене дольки, а наружные концы пластинок - к периферии дольки.

Между печёночными пластинками также радиально, как и гепатоциты,

располагаются синусоидные капилляры. Они несут кровь от периферии дольки к её центру, к центральной вене дольки.      Внутри каждой печёночной пластинки между двумя рядами печёночных клеток имеется жёлчный проточек (жёлчный каналец). Жёлчный проточек является началом внутрипечёночных жёлчевыводящих путей, которые продолжаются внепечёночными жёлчевыводящими путями. В центре дольки, около центральной вены, жёлчные проточки замкнуты, а на периферии долек они впадают в жёлчные междольковые проточки. Междольковые проточки, сливаясь друг с другом, образуют более крупные междольковые жёлчные протоки. В результате многократных слияний протоков формируются правый печёночный жёлчный проток, который выводит жёлчь из правой доли печени, и левый печёночный жёлчный проток, выходящий жёлчь из левой доли печени. После выхода из печени эти протоки дают начало внепечёночным жёлчевыводящим путям. В воротах печени эти два протока сливаются и образуют общий печёночный проток. Его длина ~4 ÷ 6 cм. Между листками печёночно-двенадцатиперстной связки общий жёлчный проток сливается с пузырным жёлчным протоком. В результате этого слияния образуется общий жёлчный проток.

Двигательная единица

Двигательная единица - простейшая структурно-функциональная единица двигательной системы, представляющая собой мотонейрон вместе с совокупностью мышечных волокон скелетной мышцы, иннервируемых этим мотонейроном. Аксон мотонейрона многократно ветвится. Его коллатерали образуют терминальные веточки, заканчивающиеся концевыми пластинками на мышечных волокнах, распределенных по всей мышце. В общем, мышечные волокна крупных мышц группируются в мышечные пучки, отделенные друг от друга соединительнотканными капсулами. Мышечные волокна одной двигательной единицы могут находиться в разных мышечных пучках. Число мышечных волокон в двигательных единицах может быть различным. Двигательные единицы с малым числом мышечных волокон иннервируемых одним мотонейроном обладают бо́льшими возможностями управления сокращением. В некоторых мышцах (тонические мышцы конечностей) двигательная единица может включать в себя ~500  ÷ 1000 мышечных волокон.      Представления о сокращении двигательной единицы можно составить при рассмотрении закономерностей сокращения мышечного волокна скелетной мышцы. При произвольном сокращении мышцы частота потенциалов действия, регистрируемых в двигательных единицах, увеличивается с увеличением напряжения мышцы. Аналогично, моделируя естественные сигналы искусственной стимуляцией аксона мотонейрона двигательной единицы, при увеличении частоты стимуляции можно зарегистрировать увеличение силы сокращения мышцы. Отсюда, следует вывод, что сила сокращения двигательной единицы может регулироваться посредством изменения частоты импульсации в аксоне мотонейрона. Управление силой сокращения целой мышцы может обеспечиваться, кроме того, числом двигательных единиц, включенных в процесс сокращения.      Двигательная единица, как и любая живая структура, является вероятностной структурой. В нормальном состоянии покоя все двигательные единицы различных мышц находятся в хорошо организованной сложной фоновой стохастической активности. В пределах одной мышцы в данный «случайный» момент времени одни двигательные единицы возбуждены, другие находятся в состоянии покоя. В следующий «случайный» момент времени активируются другие двигательные единицы. Таким образом, активация функциональных единиц есть стохастическая функция двух случайных переменных - пространства и времени