Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Уравнение Лагранжа второго рода.doc
Скачиваний:
14
Добавлен:
30.11.2018
Размер:
5.41 Mб
Скачать

Малые колебания системы с одной степенью свободы.

Произведем разложение функций A(q) и П(q) в ряды Маклорена вблизи точки q= 0; получим:

(3.52)

Отбрасывая несущественную постоянную в выражении потенциальной энергии, можем положить П(0) = 0; кроме того, как ранее уже было показано, в положении равновесия системы равна нулю первая производная от потен­циальной энергии. Вторая производная от потенциальной энергии в положении устой­чивого равновесия удовлетворяет условию

где знак равенства относится к тому случаю, когда о наличии мини­мума потенциальной энергии приходится заключать по старшим производным. Примем

Коэффициент с называют коэффициент жёскости или коэффициент квазиупругости. Правильную, по крайней мере каче­ственно, картину движения при любом t можно получить, сохраняя в разложениях потенциальной и кинетической энергии лишь члены наинизшего порядка относительно q и . Из равенств (3.52) получим:

(3.52)

Подставляя в выражение для кинетической энергии (3.43) разложение A(q) согласно (3.52), найдем:

или в принятом приближении:

(3.53)

где по условию положительности кинетической энергии всегда будет: . Коэффициент а носит название коэффициент инерции.

Имея выражения (3.52) и (3.53) для потенциальной и кинетической энергий, составим уравнения движения системы в форме Лагранжа, в нашем случае уравнение движения будет: или , где .

Сравнивая его с известным из школьного курса физики уравнением прямолинейных свободных колеба­ний точки под действием упругой восстанавливающей силы, видим, что коэффициент а при обобщенном ускорении играет ту же роль, что и масса m точки, т. е. характеризует инерционность системы, а коэффициент с аналогичен коэффициенту упругости.

Общий интеграл этого уравнения имеет вид:

где амплитуда А и начальная фаза α определяются по начальным условиям. Пусть при и , тогда

и (3.54)

Это - свободные или собственные колебания системы. Частота, или период, свободных колебаний системы не зависит ни от начальных условий движения (изохронизм малых колебаний), ни от природы обобщенной координаты; они представляют основные константы системы, определяемые структурой выражений кинети­ческой и потенциальной энергий, т. е. инерционными свойствами материальной системы и характером консервативного силового поля, в котором происходит колебательное движение системы.

Из формул (3.52), (3.53) и (3.54) видно, что амплитуда колебаний А про­порциональна корню квадратному из полной энергии Е=Т+П системы. Движение представляет гармоническое колебание частоты k и периода (в дальнейшем для периода сохраняется общепринятое обозначение Т, хотя этот символ уже использован для обозначения кинетической энергии).

Качественное изучение общей картины движения системы облег­чается введением в рассмотрение так называемой фазовой плоскости (q, ), в которой строятся кривые — фазовые траектории, выра­жающие графически зависимость между обобщенной координатой q и обобщенной скоростью системы для всего многообразия инте­гральных кривых.

Так, в только что рассмотренном случае свободных колебаний системы вокруг положения ее устойчивого равновесия фазовые траек­тории можно получить путем исключения времени t из уравнений:

q = A sin (kt+ a), = k A cos (kt + a), чтo приведет к семейству кривых

К тому же результату, очевидно, придем, написав уравнение семейства уровней полной механической энергии Е системы

Е = Т+ П =. В рассматриваемом случае консервативной системы фазовые-траектории, естественно, совпадают с кривыми уровней энергии.

Фазовыми траекториями служат подобные, между собою эллипсы, отличающиеся друг от друга только масштабом, завися­щим от начальных условий движений или, точнее, от полной энергии системы. Для всех эллипсов отношение длин полу­осей одно и то же, — оно равно ча­стоте k собственных колебаний системы.

Каждому движению системы при заданных начальных условиях соответствует движение изображающей точки в фазовой плоскости по фазовой траектории — эллипсу — в указанном на рисунке на­правлении.

Рассмотрим общий интеграл урав­нения при условии с<0, соответствующем неустойчивости равновесия системы в положении q(0)= 0. Вводя в этом случае обо­значение получим

Общий интеграл этого уравнения выражается через показатель­ные или гиперболические функции:

Как видно из полученного решения, в отличие от движения си­стемы вблизи положения устойчивого равновесия, обобщенная коор­дината q и обобщенная скорость с ростом времени t могут при­обретать сколь угодно большие значения. Найдем уравнение семейства фазовых траекторий которое и в этом случае будет совпадать с уравнением семейства уровней полной механической энергии

полученное уравнение представляет семейство подобных гипербол Все гипер­болы имеют одни и те же асим­птоты, уравнения которых