Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
алгоритм выч. погрешностей.doc
Скачиваний:
77
Добавлен:
18.11.2018
Размер:
1.38 Mб
Скачать

§2. Графическое представление результатов измерений

Графики дают возможность наглядного восприятия разного рода функциональных зависимостей в больших массивах данных. При этом через имеющиеся экспериментальные данные можно провести как теоретическую, так и экспериментальную кривые.

При оформлении графиков необходимо выполнять следующие правила.

1. График должен содержать надпись, из которой было бы ясно физическое содержание представленной закономерности.

2. Масштабы и начала отсчета по координатным осям выбираются так, чтобы график изображения зависимости занимал большую часть поля чертежа. При этом на пересечении осей не обязательно должны находиться нулевые значения величин.

Правильно

Неправильно

3. На осях координат откладываются равноотстоящие друг от друга деления масштаба так, чтобы было удобно работать с графиком. Значения, полученные в эксперименте, не указываются.

Неправильно

Неудачно

Правильно

4. В конце координатных осей обязательно указываются условные обозначения откладываемых величин и, через запятую, их единицы измерения.

6. Экспериментальная кривая проводится плавно через доверительные интервалы всех или большинства экспериментальных точек так, чтобы экспериментальные точки наиболее близко и равномерно располагались с разных сторон кривой.

Правильно

Неправильно

Метод наименьших квадратов.

Одним из методов расчета экспериментальной кривой является метод наименьших квадратов

Предположим, что требуется осуществить сглаживание (аппроксимацию) равномерного по аргументу массива данных методом наименьших квадратов (МНК).

Расчет коэффициентов фильтра. Простейший способ аппроксимации по МНК произвольной функции s(t) - с помощью полинома первой степени, т.е. функции вида y(t) = A+Bt (метод скользящих средних). Произведем расчет симметричного фильтра МНК на (2N+1) точек с окном от -N до N.

Для определения коэффициентов полинома найдем минимум функции остаточных ошибок приближения. С учетом дискретности данных по точкам tn = nt и принимая t = 1, для симметричного НЦФ с нумерацией отсчетов по n от центра окна фильтра (в системе координат фильтра), функция остаточных ошибок записывается в форме:

(A, B) = [sn - (A+B·n)]2.

Дифференцируем функцию остаточных ошибок по аргументам А, В, и, приравнивая полученные уравнения нулю, формируем 2 нормальных уравнения с двумя неизвестными:

(sn-(A+B·n)) ºsn - A1 - Bn = 0,

(sn-(A+B·n))·n ºn×sn - An - Bn2 = 0.

С учетом равенства n = 0, решение данных уравнений относительно А и В:

А = sn , B =n×sn /n2.

Подставляем значения коэффициентов в уравнение аппроксимирующего полинома, переходим в систему координат по точкам k массива y(k+) = A+B·, где отсчет  производится от точки k массива, против которой находится точка n = 0 фильтра, и получаем в общей форме уравнение фильтра аппроксимации:

y(k+) = sk-n + n×sk-n /n2.

Для сглаживающего НЦФ вычисления производятся непосредственно для точки k в центре окна фильтра (= 0), при этом:

yk = sk-n. (3.1.1)

Рис. 3.1.1.

Импульсная реакция фильтра соответственно определяется (2N+1) значениями коэффициентов bn = 1/(2N+1). Так, для 5-ти точечного НЦФ:

h(n) = {0.2, 0.2, 0.2, 0.2, 0.2}.

Передаточная функция фильтра в z-области:

H(z) = 0.2(z-2+z-1+1+z1+z2).

Коэффициент усиления дисперсии шумов:

Kq = n h2(n) = 1/(2N+1),

т.е. обратно пропорционален ширине окна фильтра. Зависимость значения Kq от ширины окна приведена на рис. 3.1.1.