Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекционный материал.doc
Скачиваний:
109
Добавлен:
17.11.2018
Размер:
11.31 Mб
Скачать

2.6. Общая тепловая мощность объекта

Общая тепловая мощность системы теплоснабжения представля­ет собой сумму расчетных расходов по отдельным видам водопотребления. Она обеспечивает покрытие нагрузок систем отопления, вентиляции, горя­чего водоснабжения и технологических процессов. В общую тепловую мощность системы теплоснабжения должны входить также и потери тепло­ты при транспортировке по тепловым сетям. В общем виде это можно вы­разить следующим образом:

Q = k(Q0+QB+QrB+QT), (2.35)

где k - коэффициент, учитывающий потери при транспортировании в тру­бопроводах системы теплоснабжения.

В свою очередь, рабочая тепловая мощность источника тепло­снабжения складывается из максимальной мощности, подаваемой в тепло­вую сеть потребителям по всем видам энергоносителя мощности, расхо­дуемой источником теплоснабжения для выработки энергоносителя (т.е. мощности на собственные нужды) и потерь мощности. В общем случае:

Qит=(Q0+QB+Qra+QT+Qсн+AQ) (2-36)

Тепловой мощностью источника теплоснабжения называется сум-ма(Q0+QB+QrB+QT).

Она определяется в зависимости от типа системы теплоснабжения и типа источника теплоснабжения. Обычно Q0 , QB , QrB, , QT даются в исход-

ных данных на проектирование источников теплоснабжения.

Для источника теплоснабжения отопительного типа и закрытой сис­темы теплоснабжения (см. п.3.1) тепловая мощность определяется, как:

, (2.37)

где Qит - тепловая мощность источника теплоснабжения; Qo и QB - соот­ветственно тепловая мощность на отопление и вентиляцию при максималь­ном зимнем режиме; QrBmax - максимально-часовая мощность на горячее водоснабжение.

Если система теплоснабжения - открытая, то тепловая мощность ис­точника теплоснабжения отопительного типа определяется по формуле:

(2.38)

(2.38)

где - среднечасовая за отопительный период тепловая мощность на

горячее водоснабжение.

Для источника теплоснабжения производственно-отопительного типа тепловая мощность складывается из мощностей на отопление, венти­ляцию, горячее водоснабжение и мощности на технологические нужды:

(2.39)

Тепловая мощность QrB задается в зависимости от типа системы тепло­снабжения (закрытой или открытой).

В зависимости от типа источника теплоснабжения и вида топлива, сжигаемого в топках котельных агрегатов, а также от типа системы тепло­снабжения, изменяется тепловая мощность, потребляемая источником теп­лоснабжения на собственные нужды. Она расходуется на подогрев воды перед установкой химводоочистки, деаэрацию воды, обдувку экономайзе­ров (для паровых котлоагрегатов), подогрев мазута (при использовании этого вида топлива) и др.

Ниже приведены формулы для ориентировочного (укрупненного) оп­ределения рабочей тепловой мощности источников теплоснабжения раз­личных типов [30]:

- для источников теплоснабжения отопительного типа с водогрейными котлами:

(2.40)

- для источников теплоснабжения производственно-отопительного ти­ па с паровыми котлами низкого давления (р =1,4 МПа) и отпуском теплоты по закрытой схеме на отопление, вентиляцию и горячее водоснабжение в размере 20% тепловой мощности источника теплоснабжения требуемая массовая выработка пара, кг/с:

(2.41)

- для источников теплоснабжения производственно-отопительного ти­ па при нагрузке на отопление, вентиляцию и горячее водоснабжение более 20% требуемая массовая выработка пара, кг/с:

(2.42)

где Dn - расход пара на технологические нужды, кг/с; GK - возврат кон­денсата от потребителя, кг/с; ц - доля возврата конденсата (по заданию); tK - температура возвращаемого конденсата, ° С.

Коэффициенты А, Б и В в формулах (2.40) - (2.42), приведенные в табл. 2.10, учитывают затраты мощности на собственные нужды и потери в источниках теплоснабжения (ИТ).

Изменение мощности источников теплоснабжения во времени полу­чают суммированием расчетных расходов одновременно действующих по грабителей данного объекта в рассматриваемый период. Расчетный расход тепловой энергии на отопление 3, вентиляцию 1, горячее водоснабжение 2 и по объекту в целом 4 представляют графически (рис. 2.4,а) в зависимости

от tH.

На основании этого графика выявляют годовое теплопотребление объ­екта, по которому осуществляют регулирование отпускаемой тепловой энергии. Графическое изменение тепловой потребности объекта строят по продолжительности стояния в определенные периоды одинаковых темпера­тур tH, принимаемых по климатологическим данным [43].

Рисунок 2.4. Графики расхода тепловой энергии объектом: а) часовой; б) годовой

Годовое теплопотребление объекта, так же, как и на отдельные нужды, изображают в осях координат справа от графика расчетных расходов (рис. 2.4, б). Так же, как и для отопительного графика, на оси абсцисс в масштабе откладывают продолжительность стояния tn, начиная с минимальной тем­пературы наружного воздуха. Для соответствующих значений tn общий расчетный расход теплоты из левого графика переносят на ординаты начала и окончания продолжительности стояния этих температур tn.

Точки пересечения, характеризующие расходы тепловой энергии в конце каждого периода стояния tn соединяют плавной кривой 5, которая

отражает потребление тепловой энергии данного объекта в течение года.

Годовой график теплопотребления можно построить и другим спосо­бом - на основе расчетных данных для каждого потребителя. Полученные значения в масштабе откладывают на соответствующих ординатах и соеди­няют плавной кривой.

Значения коэффициентов А, Б, В дня определения рабочей тепловой мощности ТГУ

Тип тепло-

генерирую­щей уста-

Система теп­лоснабжения

Тип котла

Топливо

А

Б

В

новки

Отопитель-

Закрытая

Водогрей­ный

Мазут, твердое топливо, газ

1,0526 1,018

1,0526 1,018

_

ная

Открытая

Водогрей-

Мазут, твердое

1,519

1,182

_

(Qr.B=0,2QKB)

ный

топливо, газ

1,0172

1,182

-

Производст-

Закрытая (Qr.B<0,2QK)

Паровой

Мазут, твердое топливо, газ

1,273 1,217

0,00168 0,00168

венно-отопитель-

Закрытая (Qr.B>0,2QK)

Паровой

Мазут, твердое топливо, газ

0,4375 0,4231

0,4375 0,4231

1,0184 0,9736

ная

Открытая (Qr.B>0,2QKB)

Паровой

Мазут, твердое топливо, газ

0,4372 0,4227

0,4912 0,4912

1,0184 0,9736

СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ 3.1. Классификация систем теплоснабжения

Система теплоснабжения совокупность технических устройств, агрегатов и подсистем, обеспечивающих приготовление теплоносителя, его транспортировку и распределение в соответствии со спросом на теплоту по отдельным потребителям. Последними являются системы отопления, вен­тиляции, горячего водоснабжения, а также технологические установки промышленных предприятий.

В городах и населенных пунктах средства обеспечения тепловой энер­гией коммунально-бытовых и производственных потребителей непосредст­венно влияют на санитарное состояние территории, чистоту воздушного бассейна, экономику, а также на степень благоустройства зданий и соору­жений.

Все системы теплоснабжения можно объединить в группы по следую­щим признакам: по степени централизации, по режиму работы (круглого­дичные и сезонные), по виду вырабатываемого и отпускаемого теплоноси­теля, по способу подачи воды на горячее водоснабжение, по количеству трубопроводов тепловой сети.

В зависимости от типа и мощности источника теплоснабжение бывает:

  • централизованное от тепловых и атомных электростанций (ТЭЦ и АТЭЦ) - теплофикация;

  • централизованное от районных или квартальных котельных (приме­ няется как в больших жилых массивах, так и в отдельных жилых кварталах и поселках);

  • местное от групповых котельных (применяется для теплоснабжения одного или группы зданий);

  • автономное от теплогенераторов, устанавливаемых непосредственно в отапливаемых зданиях (предназначено для отопления, а иногда и горячего водоснабжения отдельных домов и помещений).

Централизованное теплоснабжение потребителей осуществляется по протяженным и разветвленным тепловым сетям от теплоэлектроцентралей на базе комбинированной выработки тепловой и электрической энергии (теплофикация), а также от крупных районных и других источников тепло­снабжения.

Для автономных систем теплоснабжения характерна малая протя­женность или даже полное отсутствие тепловых сетей от источника тепло­снабжения к потребителям тепловой энергии. Автономное теплоснабжение осуществляется от источников теплоснабжения малой мощности, автоном­ных квартирных теплогенераторов и печей. Автономная (децентрализован­ная) система теплоснабжения состоит из источника теплоты, который совмещен с нагревательным прибором потребителя или соединен с ним внут­ренними тепловыми сетями. Большие здания имеют развитые внутренние тепловые сети, которые называются системами отопления. Так как система теплоснабжения небольшой группы зданий мало отличается от системы отопления одного здания, в энергетике к децентрализованным относят сис­темы мощностью менее 58 МВт [24].

Автономные системы делятся на две группы:

  • системы, у которых источник теплоснабжения соединен с приемни­ ками (нагревательными приборами, калориферами, водоразборной армату­ рой и пр.), внутренними тепловыми сетями (системы отопления, вентиля­ ции, местные системы горячего водоснабжения);

  • системы, у которых источник теплоснабжения и нагревательные по­ верхности объединены в одном агрегате (отопительные печи, теплогенера­ торы).

Автономные (децентрализованные) системы первого типа находят применение в городах и сельской местности, второго типа - в малых насе­ленных пунктах.

Существуют также поквартирные системы отопления и системы, обес­печивающие отопление и горячее водоснабжение квартиры.

Перечисленные системы теплоснабжения характеризуются различны­ми показателями качества, надежности работы и экономичности. При строительстве новых городов и населенных пунктов целесообразную сис­тему теплоснабжения выбирают на основании технико-экономических рас­четов, главными критериями при этом являются величина и концентрация тепловой нагрузки.

Решение по выбору типа системы теплоснабжения - централизованной или децентрализованной - зависит от величины и пространственной струк­туры населенного пункта, плотности тепловых нагрузок и размещения або­нентов, вида поставляемого топлива, а также от уровня социальных и сани­тарно-гигиенических требований, предъявляемых к условиям эксплуатации и функционирования системы.

К преимуществам централизованных систем теплоснабжения часто от­носят меньшие расходы топлива при выработке теплоты в котельных.

Приведенный тезис не вызывает сомнения; однако, при сравнении энергетической эффективности систем теплоснабжения он не должен рас­сматриваться как отвлеченный, так как в централизованной системе неиз­бежны затраты на собственные нужды котельной, на перекачку теплоноси­теля, потери теплоты с утечками в тепловых сетях и на охлаждение тепло­носителя, т.е. сравнение теплотехнической эффективности должно прово­диться не по источнику теплоснабжения, а по системе в целом.

В табл. 3.1 на основе анализа данных по ряду проектов с учетом регла­ментируемых величин приведены результаты сравнения энергетической эффективности систем теплоснабжения.

Проведенное сравнение показывает, что теплотехнические характе­ристики автономного теплоснабжения превышают в целом показате­ли централизованных систем.

Автономные системы, несмотря на ряд присущих им недостатков (зна­чительные затраты времени и труда на обслуживание, более низкие сани­тарные условия в помещении, низкий КПД теплоемких отопительных пе­чей и теплогенераторов, выпускаемых отечественной промышленностью, трудности обеспечения теплотой многоквартирных зданий), имеют и опре­деленные достоинства:

  • меньшие, чем при централизованных системах, единовременные ка­ питальные вложения;

  • возможность поэтапного ввода в работу оборудования, по мере за­ вершения строительных работ;

  • независимое обеспечение тепловой нагрузки объектов и возможность местного регулирования работы системы;

  • возможность разработки полностью автономных систем, не требую­ щих электропривода отдельных устройств системы (системы с естествен­ ной циркуляцией теплоносителя и теплогенераторы на естественной тяге);

  • в случае применения крышных котельных достигается снижение за­ нимаемой площади территории населенного пункта;

  • привлечение средств населения (возможно, частичное) для сооруже­ ния системы.

Необходимо отметить, что на сегодняшний день автономные теплоге­нераторы, предлагаемые на рынке теплотехнического оборудования целым рядом зарубежных фирм, имеют очень высокие показатели коэффициента полезного действия, санитарно-гигиенические характеристики эксплуата­ции, малые (а иногда вовсе отсутствующие) затраты времени и труда на обслуживание. Однако такие теплогенераторы имеют достаточно высокую стоимость.

Как уже говорилось выше, в городах к децентрализованным системам относят системы с мощностью до 58 МВт. Для малых населенных пунктов под децентрализованным теплоснабжением должно пониматься обеспече­ние теплотой группы потребителей от одной системы, включающей тепло-генерирующую установку, единую тепловую сеть к потребителям, местные системы теплопотребления внутри зданий. К системе могут быть подклю­чены часть или все здания жилой зоны поселков, а также производственные объекты.

Под децентрализованным теплоснабжением понимается обеспечение потребителей теплотой от местных (автономных) теплогенераторов по внут-ридомовым или внутриквартальным сетям теплоснабжения (см. п. 3.2.). Внешние тепловые сети при этом отсутствуют, а теплогенератор (один или несколько) устанавливается непосредственно в здании или квартире.

Результаты сравнения энергетической эффективности систем теплоснабжения

Показатели

Тип системы

Централизованная, закры­тая, двухтрубная

Децентрализованная от автономного тепло­генератора

твердое топ­ливо

природный газ

твердое топливо

природный газ

Эксплуатационный КПД котла (теплогенератора), брутто, %*

75-81,5

85-90,5

63-75

78-90

Эксплуатационный КПД ко­тельной, нетто, %**

65-75

80-85

60-70

75-85

Расход электроэнергии:

- на собственные нужды ко­тельной (с учетом сетевых на­сосов), кВт/МВт; - в пересчете на эквивалентную тепловую энергию, кВт/МВт*** - в пересчете на эквивалентную тепловую энергию, % - принято в расчете, %

15-25

42,8-71,4 4,3-7,1 5

6-8

17,1-22,9 1,7-2,3 2

-

-

Потери теплоты: - в тепловых сетях с утечками теплоносителя - в окружающую среду, %****

3

7

3 7

-

-

Теоретический КПД системы, %

50-60

68-73

63-75

78-90

* Меньшее значение - при установке в котельной чугунных секционных котлов, большее - стальных водогрейных котлов серии КВ.

** Для автономных теплогенераторов КПД увеличен на значения тепловых потерь от внешнего охлаждения q5 = 3-5%,так как теплогенератор устанавливается в пре­делах общей площади помещения.

*** КПД отпуска электроэнергии по теплоте принят 35%. **** Принято как среднее для систем 5-9% [55].

Существующая структура расселения и архитектурно-планировочная организация малых населенных пунктов характеризуется рядом специфи­ческих особенностей: малые значения тепловых нагрузок как в целом по населенным пунктам (2-15 МВт), так и по отдельным абонентам (11-35 кВт); низкая плотность жилого фонда с дальнейшей тенденцией ее сниже­ния в связи с увеличением предельных размеров приусадебных участков; низкая плотность тепловых нагрузок (90-140 кВт/га); дефицит квалифици­рованного эксплуатационного и обслуживающего персонала; трудности снабжения топливом и оборудованием из-за удаленности от магистралей и промышленных центров; выборочный характер нового строительства.

По технико-экономическим показателям централизованные системы в малых населенных пунктах рациональны в застройке зоны общественных центров и примыкающих к ним жилых зданий. Децентрализованными сис­темами теплоснабжения следует оборудовать одно- и двухэтажные здания селитебной зоны. Тем не менее, во всех случаях для окончательного выбора той или иной системы теплоснабжения (степени ее централизации) для ка­ждого конкретного случая необходимым является проведение технико-экономических расчетов.

По виду энергоносителя системы теплоснабжения делятся на паровые и водяные.

Водяные системы используются для обеспечения тепловой энергией объектов жилищно-коммунального хозяйства (отопление, вентиляция, кон­диционирование воздуха, горячее водоснабжение), а также с целью снаб­жения промышленных предприятий горячей водой на технологические ну­жды. В ряде случаев тепловые сети системы теплоснабжения могут вклю­чать, кроме трубопроводов жилищно-коммунального назначения, и трубо­проводы пароснабжения технологических потребителей паром низкого давления (до 1,4 МПа).

Расположение России в северной климатической зоне и стремление защитить автономные сети от размораживания при аварийных отключениях электроэнергии или при периодической работе инженерных систем часто являются причиной замены воды, используемой в качестве теплоносителя, на «незамерзающий» теплоноситель [60].

В качестве «незамерзающего» теплоносителя часто используется ши­рокий спектр водных смесей на основе моноэтиленгликоля с комплексными присадками, обеспечивающими стабильность свойств, низкую коррозион­ную активность, антивспенивание, антиокислительные свойства и безна-кипный режим работы системы.

Необходимо, однако, отметить, что в ряде случаев возможность при­менения этого теплоносителя ограничена, а в случае использования необ­ходима его регулярная замена - не реже одного раза в два года - в связи со «старением» и снижением активности присадок.

Паровые системы теплоснабжения распространены на промышленных предприятиях, где пар используется в качестве энергоносителя в техноло­гических процессах, а также для нужд санитарно-технических систем в пределах этих предприятий.

По способу подачи воды на горячее водоснабжение водяные системы теплоснабжения подразделяются на закрытые и открытые.

В закрытых системах воду из тепловых сетей используют только в качестве энергоносителя в теплообменниках для подогрева холодной водо­проводной воды, поступающей в местную систему горячего водоснабже­ния.

В открытых системах вода непосредственно из тепловой сети забира­ется для приготовления и подачи ее в систему горячего водоснабжения по­требителя.

По количеству трубопроводов тепловой сети тепловые сети делятся на одно-, двух-, трех и четырехтрубные.

Наибольшее распространение получили двух- и четырехтрубные теп­ловые сети, однако, возможно применение одно- и трехтрубных тепловых сетей. Системы теплоснабжения большой и средней мощности с точки зре­ния экономичности предпочтительно выполнять двухтрубными - с общим подающим трубопроводом горячей воды для отопления, вентиляции и го­рячего водоснабжения и общим обратным трубопроводом.

Использование четырехтрубных тепловых сетей упрощает процессы подготовки теплоносителя для потребителей теплоты, так как сети вклю­чают два подающих трубопровода для подачи горячей воды на нужды ото­пления, вентиляции и горячего водоснабжения и два обратных трубопрово­да от потребителей (из систем отопления, вентиляции и циркуляционного трубопровода горячего водоснабжения).

Тепловые потребители могут присоединяться непосредственно к теп­ловым сетям через центральные тепловые пункты (ДТП) или индивидуаль­ные тепловые пункты (ИТП, абонентские вводы), в которых осуществляет­ся приготовление и подача горячей воды нужных параметров для отопле­ния, вентиляции и горячего водоснабжения потребителей. ЦТП и ИТП в общем случае включают подогреватели, элеваторы, насосы, запорно-регулирующую арматуру и средства автоматического регулирования рас­хода и параметров теплоносителей и т.д.