Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конструкционные материалы.doc
Скачиваний:
55
Добавлен:
28.10.2018
Размер:
2.64 Mб
Скачать

7.3. Титан и его сплавы

Титан  металл серебристо-белого цвета с плотностью 4,5 Мг/м3 и температурой плавления 1672 С. Имеет две аллотропические модификации: -низкотемпературную с плотноупакованной гексагональной кристаллической решеткой и -высокотемпературную (выше 882 С) с кубической объемно-центрированной решеткой.

Титан легкий, прочный, тугоплавкий, более коррозионностойкий, чем нержавеющие стали за счет образования оксидной пленки TiO2. Титан обрабатывается давлением в холодном и горячем состояниях, хорошо сваривается, но плохо обрабатывается резанием.

Механические свойства титана прежде всего определяются составом: чем он чище (меньше примесей), тем ниже прочность и выше пластичность.

Азот, кислород и водород снижают пластичность; углерод  ковкость и обрабатываемость резанием; углерод и кислород  коррозионную стойкость.

Высокий уровень механических свойств, хорошая технологичность, низкая плотность и коррозионная стойкость определяют области применения титана. Он используется в качестве раскислителя при выплавке сталей, модификатора чугунов, в литейных алюминиевых и магниевых сплавах, при производстве твердых сплавов.

По структуре (после охлаждения на воздухе) титановые сплавы подразделяются на три группы: первая группа  -сплавы; вторая  +-сплавы; третья  -сплавы. В практике, главным образом, используются - и +-титановые сплавы.

Сплавы первой группы ВТ4, ВТ5, ОТ4, ВТ18 и другие в основном легируются алюминием, в некоторых из них содержится марганец, молибден, ниобий, кремний, олово, цирконий. Сплавы отличаются повышенной прочностью при комнатной и повышенных температурах, термически стабильны, обладают низкой технологической пластичностью, особенно при содержании алюминия более 5 %. Сплавы термически не упрочняются, их подвергают рекристаллизационному отжигу (650…850 С). Механические свойства сплавов следующие: в = 650…880 МПа,  = 15…40 %.

Сплавы второй группы ВТ6, ВТ8, ВТ14 и другие содержат алюминий, ванадий, молибден. Они характеризуются более высокой прочностью, которую можно повысить за счет закалки и старения; меньшей склонностью к водородной хрупкости, чем -сплавы. Следует отметить, что главный эффект упрочнения сплавов достигается легированием. Механические характеристики сплавов: в = 800…1150 МПа,  = 8…15 %.

Сплавы третьей группы ВТ3-1, ВТ22, ВТ15 и другие наиболее пластичны, но наименее прочны.

Титановые сплавы применяются в химической промышленности, судостроении, машиностроении, авиации, ракетной технике, энергомашиностроении, в машинах и оборудовании легкой и пищевой промышленности. Они успешно используются в криогенной технике (аммиачные компрессоры, холодильные установки, центробежные насосы магистральных газопроводов для северных нефтедобывающих районов, емкости для хранения жидкого водорода, азота, гелия и т.д.).

7.4. Медь и ее сплавы

Медь  металл красного (светло-розового) цвета с плотностью 8,9 Мг/м3 и температурой плавления 1083 С; имеет кубическую гранецентрированную кристаллическую решетку; не имеет аллотропических превращений.

Широкое применение меди обусловлено рядом ее ценных свойств и прежде всего высокой электро- и теплопроводностью, пластичностью, хорошей жидкотекучестью и др. Медь и ее сплавы хорошо обрабатываются давлением, свариваются всеми видами сварки и легко поддаются пайке.

Механические характеристики чистой меди (прокатанной и отожженной): в = 250…270 МПа;  = 40…50 %;  = 75 %; 45 НВ.

На структуру и свойства меди существенное влияние оказывают примеси. Алюминий, железо, мышьяк, фосфор и сурьма снижают электро- и теплопроводность меди. Примеси, нерастворимые в меди, отрицательно сказываются на механических и технологических свойствах. Так, висмут вызывает хладноломкость меди, кислород понижает пластичность и коррозионные свойства; водород делает ее хрупкой и при деформировании вызывает растрескивание. Это явление известно под названием «водородной болезни»; свинец, взаимодействуя с медью, образует легкоплавкую эвтектику (326 С) и приводит к горячеломкости меди. Кислород с медью образует соединение Cu2O, которое отрицательно влияет на пластические свойства, технологичность и коррозионные свойства. Сера с медью образует соединение Cu2S, которое приводит к хладноломкости и снижает пластичность при горячей и холодной обработке давлением. Фосфор повышает механические свойства и жидкотекучесть, он способствует сварке и широко применяется как раскислитель. Селен и теллур образуют с медью соединения Cu2Se и Cu2Te, которые ухудшают свариваемость, снижают пластичность, но значительно улучшают обрабатываемость резанием.

Медь применяется для изготовления электрических проводов и кабелей, используется в качестве легирующей добавки в различные металлические сплавы; в машиностроении идет на изготовление теплообменников, сварочной проволоки, деталей и узлов подвижного состава железных дорог, судов, самолетов и т.д. На основе меди созданы важные промышленные сплавы (латуни, бронзы, медно-никелевые и др.).

Латунями называют двойные или многокомпонентные сплавы меди, основным легирующим элементом которых является цинк. Цвет (от красноватого до светло-желтого) и механические свойства латуни изменяются при увеличении содержания в них цинка. Их маркируют буквой Л, за которой ставится цифра, указывающая процентное содержание меди, например латунь марки Л68 содержит 68 % меди, остальное  цинк. Если латунь помимо цинка содержат другие элементы (Al, Mn, Si и др.), то после буквы Л ставят условное обозначение этих элементов (А  алюминий, Ж  железо, Н  никель, К  кремний, Т  титан, Мц  марганец и т.д.), а затем цифры, указывающие на среднее содержание элемента. Например, латунь марки ЛАЖМц66-6-3-2 содержит 66 % меди, 6 % алюминия, 3 % железа и 2 % марганца, остальной  цинк.

По назначению латуни разделяются на деформируемые (листы, ленты, проволока, трубы и т.д.), и литейные (отливки, слитки и т.п.).

Латунь, содержащая около 15 % Zn, имеет золотистый цвет, хорошую стойкость против атмосферной коррозии, и ее используют вместо золота для изготовления медалей и художественных изделий. При добавке к латуни олова (до 15 %) она приобретает стойкость в морской воде (морская латунь).

При содержании цинка более 20…30 % латунь склонна к коррозионному растрескиванию. Это явление известно под названием сезонной болезни, так как коррозионное растрескивание связано с периодами года, когда воздух насыщен влагой. Во избежание растрескивания латунь подвергается отжигу (250…300 С), который снимает внутренние напряжения.

Механические свойства латуни зависят от содержания цинка: сопротивление при растяжении возрастает от 30…32 % Zn, затем падает. Твердость латуни по мере увеличения содержания цинка до 40…45 % увеличивается незначительно, а затем резко повышается.

Механические характеристики деформируемых двойных латуней марок Л96, Л90, Л80, Л70, Л68, Л59: в = 450…600 МПа,  = 2…5 % (в нагартованном состоянии) и в =240…380 МПа,  = 52…44 % (в отожженном состоянии).

Специальные деформируемые многокомпонентные латуни характеризуются почти такими же механическими свойствами.

Литейные латуни (ЛК80-3, ЛАЖМц66-6-3-2; ЛМцНЖА60-2-1-1-1 и др.) по прочности не уступают соответствующим деформируемым латуням, но несколько хуже их по пластичности.

Бронзами называют сплавы меди с оловом, алюминием, кремнием, бериллием, кадмием, хромом и другими элементами. Бронзы называют по основным легирующим элементам: оловянные, алюминиевые, бериллиевые, кремнистые и т.д. Обозначают бронзы буквами Бр, затем ставят первые буквы основных легирующих элементов (О  олово, Ж  железо, Ф  фосфор, Б  бериллий, Х  хром и т.д.) и цифры, показывающие их процентное содержание. Так, например, БрОФ10-1 содержит 10 % олова и 1 % фосфора, остальное  медь.

Широкое применение в промышленности находят оловянные бронзы для изготовления водяной и паровой аппаратуры, подшипников, зубчатых колес, пружин и др.

Бронзы обладают малой усадкой, а также высокой химической стойкостью. Олово весьма значительно изменяет свойства бронзы, уже при содержании 5 % олова резко снижается пластичность бронз.

В оловянные бронзы водят добавки: цинк (5…10 %)  для удешевления, свинец (3..5 %)  для лучшей обрабатываемости, фосфор ( 1 %)  для придания пластичности.

Чаще всего используются оловянные бронзы следующих марок: литейные бронзы БрО10 (в 250 МПа,  = 5 %), БрОЦС5-5-5 (в = 170 МПа,  = 8 %) и др.; деформируемые бронзы БрОЦ4-3 (в = 320 МПа,  = 40 %), БрОЦС4-4-2,5 (в =325 МПа,  = 40 %) и др. Безоловянные бронзы широко применяются в промышленности.

Самыми распространенными являются алюминиевые (двойные и сложные) бронзы, превосходящие оловянные по механическим свойствам.

Так, БрА7 в отожженном состоянии имеет следующие механические характеристики: в = 420 МПа,  = 70 %, а БрАЖН10-4-4  в = 650 МПа,  = 40 %. Из этих бронз изготовляют мелкие ответственные детали машин.

Отливки из кремнистых бронз отличаются более высокой коррозионной стойкостью, механическими свойствами и плотностью. Поэтому бронзы марки БрКЦ4-4 являются заменителями бронз марки БрОЦС5-5-5.

Бериллиевые бронзы (БрБ2 и др.) характеризуются высокой прочностью (в = 1200 МПа в закаленном и состаренном состояниях) и упругостью, химической стойкостью, свариваемостью и обрабатываемостью резанием. Из них делают мембраны, пружины.

Свинцовистые бронзы (например, БрС30) являются хорошими антифрикционными материалами для подшипников.

Кроме латуней и бронз находят применение медно-никелевые сплавы, обладающие высокими электрическими и термоэлектрическими свойствами. К ним относятся сплавы, содержащие кроме меди от 18 до 30 % никеля, 0,8 % железа и 1 % марганца (мельхиор); 13,5…16,5 % Ni и 18…22 % Zn (нейзильбер); 39…41 % Ni и 1…2 % Mn (константан); 2,5…3,5 % Ni и 11,5…13,5 % Mn (манганин) и др.