Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конструкционные материалы.doc
Скачиваний:
55
Добавлен:
28.10.2018
Размер:
2.64 Mб
Скачать

7.2. Магний и его сплавы

Магний  металл серебристо-белого цвета с плотностью 1,74 Мг/м3 и температурой плавления 651 С; имеет гексагональную плотноупакованную кристаллическую решетку; аллотропических превращений не имеет.

Магний  химически активный металл, на воздухе окисляется с образованием оксидной пленки MgO, не обладающей защитными свойствами. Эта пленка растрескивается из-за более высокой плотности (3,2 Мг/м3), чем у самого магния. Магний в слитках, а также изделия из магниевых сплавов не огнеопасны. Опасность может представлять магний в виде стружки, порошка или пыли. Взаимодействие воды с горячим и расплавленным магнием сопровождается взрывом.

Пластическая деформация магния и его сплавов происходит при повышенных температурах.

Магний и его сплавы имеют хорошую обрабатываемость резанием, легко свариваются, в особенности аргонодуговой сваркой. Механические свойства прокатанного и отожженного магния: в = 180 МПа; 0,2 = 100 МПА;  = 15 %; НВ 30.

Примеси железа, никеля, кобальта и меди снижают коррозионную стойкость магния и сплавов на его основе.

Магний используется главным образом для получения сплавов на его основе и легирования алюминиевых сплавов. Благодаря большой химической активности к кислороду магний применяют в качестве раскислителя в производстве стали и цветных сплавов, а также для получения трудновосстанавливаемых металлов (титана, циркония, ванадия, урана и др.). Его используют также для получения высокопрочного модифицированного чугуна. В химической промышленности порошкообразный магний применяют для обезвоживания органических веществ (спирта, анилина и др.), а также для получения тетраэтилсвинца, тетраметила и других препаратов, применяемых в качестве добавок к нефтепродуктам и в фармакологии. Магний в порошкообразном виде и в виде ленты горит ослепительно белым пламенем, что используется в пиротехнике, в фотографии для моментальных съемок, в военной технике (сигнальные ракеты, зажигательные бомбы и др.).

В последние годы на основе магния созданы сплавы с особыми физическими и химическими свойствами. Из них изготавливают аноды для источников тока, детали машин с высокими демпфирующими свойствами и др.

Для получения сплавов к магнию добавляют различные элементы, повышающие его свойства: алюминий, цинк и марганец.

Введение марганца в магний практически не оказывает влияния на прочностные характеристики, но снижает пластичность и вместе с тем повышает сопротивление коррозии и улучшает свариваемость.

Содержание алюминия в сплавах до 6…7 % приводит к повышению прочности и пластичности. При большем содержании алюминия прочность резко падает.

Свойства сплавов магния, содержащих цинк, изменяются по сложной кривой. Максимальные значения механических характеристик отвечают содержанию цинка 4…6 %. Для измельчения зерна, повышения механических свойств и коррозионной стойкости магниево-цинковых сплавов к ним добавляют небольшие количества циркония и ЩЗМ (церия и др.).

Магниевые сплавы разделяют на литейные и деформируемые. Из литейных сплавов получают детали методом фасонного литья; их маркируют буквами МЛ, что означает магниевый литейный сплав. Деформируемые сплавы используют для получения полуфабрикатов и изделий путем пластической деформации (прокатка, ковка, штамповка и т.д.). Деформируемые магниевые сплавы маркируются двумя буквами МА. За буквами МЛ и МА ставятся цифры, указывающие номер сплава.

К литейным относятся следующие магниевые сплавы: на основе системы MgAlZr (МЛ3, МЛ5; в = 147…225 МПа,  = 2…5 %); на основе MgNbZr (МЛ10; в = 225…235 МПа,  = 3 %); на основе MgZnZr (МЛ12; в = 200…220 МПа,  = 3…6 %).

К деформируемым относят следующие магниевые сплавы: на основе системы MgMn (МА1; МА8; в = 240…260 МПа,  = 5…12 %); на основе MgAlZn (МА2, МА5 и др.; в =260…310 МПа,  =8…12 %); на основе MgNd (МА12; в =280 МПа,  = 10 %); на основе MgZnZr (МА14; в = 350 МПа,  =14 %) и др.

Благодаря малой плотности сплавы на основе магния по удельной прочности превосходят некоторые конструкционные стали, чугуны и алюминиевые сплавы. При замене алюминиевых сплавов магниевыми на 25…30 % снижается масса детали. Магниевые сплавы хорошо поглощают вибрации, что очень важно для авиации, транспорта и текстильной промышленности. Удельная вибрационная прочность магниевых сплавов с учетом демпфирующей способности почти в 100 раз больше, чем у дуралюмина, и в 20 раз больше, чем у легированной стали.

Магниевые сплавы хорошо работают на продольный или поперечный изгиб. Удельная жесткость магниевых сплавов при изгибе и кручении выше, чем алюминиевых сплавов, на 20 % и сталей на 50 %. Магний и сплавы на его основе немагнитны и не дают искры при ударах и трении. Магниевые сплавы представляют особый интерес для конструкций, где масса является решающей (авиация, космическая и ракетная техника, транспортное машиностроение и др.). Они применяются в приборостроении, радиотехнике, текстильной и полиграфической промышленности.