Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Part 1.docx
Скачиваний:
1551
Добавлен:
27.03.2016
Размер:
10.09 Mб
Скачать

Список литературы

  1. Halama J.R. Representation of gamma camera images by computer// In: Nuclear medicine. 2nd edition. V. 1 / Ed. by R.E. Henkin, D. Bova, G.L. Dillehay et al. 2006. Mosby, Inc. P. 154 – 164.

  2. Cherry S.R., Sorensen J.A,, Phelps M.E. Physics in nuclear medicine. Third Ed. // Philadelphia. 2003. WB Saunders.

  3. Sorenson J.A., Phelps M.E. Physics in nuclear medicine // Orlando. 1987/ Grune & Stratton.

  4. S. Glick. Image content and image filtering techniques // In: Nuclear medicine. 2nd edition. V. 1 / Ed. by R.E. Henkin, D. Bova, G.L. Dillehay et al. 2006. Mosby, Inc. P. 165 – 176.

  5. Johnson V.E., Wong W.H., Hu X. Image restoration using Gibbs priors: boundary modelling, treatment of blurring, and selection of hyperpararameter // IEEE Trans. Pattern Anal Mach Intell. V.13. 1991. P. 413 – 425.

  6. Rutter B.W., Algazi V.R., Huesman R.H. Computationally efficient nonlinear edge preserving smoothing of n-D medical images via scale-space fingerprint analysis // IEEE Nuclear Science Symposium and Medical Imaging Conference. V. 15. 2000. P. 282 – 286.

  7. Goodman J.W., Belsher J.F. Fundamental limitations in linear invariant restoration of atmospherically degraded images // In: Imagingthrough the atmosphere. Ed: Wyant J.C./ V. 75. Bellingham, Wash. 1976. P. 141 – 154.

  8. Metz C.E. A mathematical investigation of radioisotope scan image processing // PhD thesis. Philadelphia. 1969. University of Pennsylvania.

  9. Fast count-dependent digital filtering of nuclear medicine images: concise communication / D.T. King, P.W. Doherty, R.B. Schwinger et al // J. Nucl. Med. V. 24. 1983. P. 1039 – 1045.

  10. Pinney B.C., Glick S.J., King M.A. Relative importance of the error source in Wiener restoration of scintigrams // IEEE Trans. Med. Imaging. V. 9. 1990. P. 60 – 70.

Глава 6. Применение планарных изображений для количественного определения активности in-vivo

Современные гамма-камеры производят цифровые изображения, в которых легко можно определить число отсчетов в любой области изображения. Однако эти количественные данные слишком приближенно связаны с локальной концентрацией РФП в пациенте, часто представляющей наибольший интерес. Такое положение во многом является результатом рассеяния фотонов в пациенте и недостатком трехмерной информации в планарной визуализации. В то же время имеется достаточное количество приложений, в которых абсолютное определение активности в определенном районе или отношение активностей в разных районах пациента представляет большой интерес.

Несмотря на то, что однофотонная эмиссионная компьютерная томография (ОФЭКТ, англ. SPECT) считается наиболее точным методом количественного определения активности, ее использование часто затруднительно из-за технической сложности и редко подходит для динамических исследований (см. также раздел 4 главы 7). Таким образом, если высокая степень точности не требуется, предпочтительной для этих целей является применение планарных изображений.

  1. Процесс ослабления γ-излучения

Ослабление интенсивности γ-излучения при прохождении его через среду происходит за счет взаимодействия фотонов с атомами, ядрами и электронами среды. В рассматриваемой области энергий (20 – 500 кэВ) основными видами взаимодействия являются комптоновское (точнее некогерентное) рассеяние и фотопоглощение фотонов. Для элементов, входящих в состав биологической ткани при энергии фотонов ≥ (30 – 40 кэВ), доминирующим эффектом взаимодействия является комптоновское рассеяние (см. главу 1), при котором фотон теряет часть своей энергии и отклоняется от направления первоначального движения. В то же время для элементов, входящих в состав скелета, эффект фотопоглощения играет более значимую роль, особенно в диапазоне низких энергий фотонов.

В специальной геометрии, называемой геометрией узкого пучка, эффект ослабления описывается простой экспоненциальной функцией. Особенностью этой геометрии является отсутствие в пучке рассеянных фотонов, или регистрация детектором только фотонов с первоначальной энергией. Если узкий мононаправленный пучок падает на плоский срез материала толщиной x, то долю фотонов, которые не рассеются и не поглощаются в слое, можно определить экспериментально, помещая сильно коллимированный детектор фотонов на оси пучка на противоположной стороне среза (рис.6.1). Рассеянные фотоны выходят из пучка и не попадают в детектор (за исключением фотонов, рассеянных на очень малые углы). В этих условиях скорость счета C, регистрируемая детектором, связана со скоростью счета в отсутствии слоя материала Co простой формулой:

(6.1)

где μ – линейный коэффициент ослабления фотонов, зависящий от их энергии и материала (см. рис. 1.23)

Рис. 6.1. Измерение поглощения γ-излучения в плоском срезе материала в геометрии узкого пучка

Уравнение (6.1), дополненное учетом геометрического ослабления излучения, можно использовать для оценки истинного количества активности, находящегося внутри пациента, если известно расстояние x от локализации активности до поверхности кожи. Данное расстояние возможно определить поперечной гамма-камерой, ультразвуковой аппаратурой или радиографическими исследованиями. Средние значения расстояний до органов приближенно можно найти по анатомическим данным.

Скорость счета конвертируется в определение активности, измеряя источник известной активности в отсутствии поглощающего вещества. Из этих измерений находится коэффициент пропорциональности k между активностью стандартного источника As и скоростью счета Cs, измеренной гамма-камерой в отсутствии ослабления:

(6.2)

где k имеет размерность милликюри (или Беккерель) активности на отсчет в секунду.

Отсюда активность внутри пациента равна:

(6.3)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]