Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГЕОДЕЗИЧЕСКИЕ РАБОТЫ ПРИ ВЕДЕНИИ КАДАСТРА.doc
Скачиваний:
150
Добавлен:
27.03.2016
Размер:
1.06 Mб
Скачать
  1. Проектирование и построение на местности исходной основы для ведения геодезических работ при создании государственного кадастра недвижимости

1.1 Проектирование геодезического обоснования

Исходной основой для выполнения геодезических работ при создании на заданной территориальной зоне Государственного кадастра недвижимости является геодезическое обоснование (ГО). Оно позволяет построить единую систему координат на всю территориальную зону и является исходной основой для выполнения крупномасштабного картографирования и выноса в натуру проекта межевания земельных участков. ГО состоит из планового и высотного геодезического обоснования. Применительно к территории города плановое геодезическое обоснование (ПГО) создается, как правило, в многоступенчатом варианте и состоит из следующих типов геодезических построений:

1. Опорные геодезические сети (ОГС);

2. Геодезические сети сгущения (ГСС);

3. Геодезическое съёмочное обоснование (ГСО).

Отметим, что на основании закона о ГКН вся перечисленная структура геодезического обоснования относится к опорным межевым сетям (ОМС).

1.1.1 Проектирование опорных геодезических сетей

О

Структура ОГС в зависимости от площади города

Табл.1.1

Площадь города

S км2

Число ступеней ОГС

Класс

ОГС

200

50 – 200

5 – 50

3

2

1

2,3,4

3,4

4

ГС предназначаются для создания единой системы координат и решения научных задач по определению локальных движений земной коры в зоне городской территории. В соответствии с нормативно-справочными документами /13/ плотность пунктов ОГС должна быть доведена до 1 пункт на 4км. В зависимости от площади городской территории ОГС могут состоять из одной, двух или трёх ступеней. Эта зависимость приведена в следующей таблице.

Городское геодезическое обоснование, как правило, создается в местной системе координат. Поэтому первая ступень ОГС имеет только один исходный пункт, расположенный, по возможности, в центральной части города и несколько сторон с исходными дирекционными углами. Такая схема построения позволяет исключить влияние ошибок исходных данных, которые возникают при полной привязке городского геодезического обоснования к исходной Государственной геодезической сети. Для ориентирования городского геодезического обоснования между сторонами с исходными дирекционными углами и любой стороной сети должны быть измерены примычные углы (Рис.1.1). Отметим, что несколько исходных дирекционных углов используются для контроля ориентирования городского геодезического обоснования.

Как правило, координаты пунктов ГГО вычисляют как в городской, так и в государственной системе координат. Поэтому все исходные пункты, в том числе, образующие исходные дирекционные углы, должны принадлежать государственным геодезическим сетям.

ОГС строятся в виде триангуляции, трилатерации, линейно-угловых и комбинированных построений /5/. Одна из возможных схем построения таких сетей в виде городской триангуляции приведена на рис.1.1.

Схема построения ОГС в виде городской триангуляции

Городская триангуляция представляет собой сеть, состоящую из треугольников или геодезических четырёхугольников. В этой сети измеряются углы между соответствующими направлениями на смежные пункты, и 2 или 3 стороны.

В

A

D

ставка определяемого пункта триангуляционной сети 3 класса в исходную сеть 2 класса

β7

SAD

β6

β8

β5

1

SCD

SAB

β4

β1

β2

B

C

β3

SCB

Рис.1.2

При многоступенчатом варианте построения ОГС (табл.1.1) последующие ступени проектируются как “вставки” в старшую ступень ОГС. Примерами таких сетей может служить городская триангуляционная сеть 3 класса (в сети запроектирован только один определяемый пункт), которая вставляется в исходную триангуляционную сеть 2 класса. Это построение изображено на рис.1.2 (следует иметь в виду, что только для первой ступени ОГС применима схема с одним исходным пунктом, для всех остальных ступеней городского геодезического обоснования в качестве исходных необходимо использовать не менее двух или более исходных пунктов, полученных из старших ступеней).

Отметим важную особенность построения на местности многоступенчатых ОГС. Пункты старших ступеней, могут терять свою стабильность в пространстве в результате осадок и деформаций зданий и сооружений, на крышах которых они расположены. Следовательно, при построении младшей ступени необходимо контролировать стабильность исходной основы. Данная процедура может быть выполнена на основании сравнения контрольных измерений (длин линий и углов на исходных пунктах) с их значениями, полученными по координатам этих пунктов, приведенных в исходном каталоге.

где mS – нормативно заданная точность определения длин линий в наиболее слабом месте исходной ступени ОГС.

Первая ступень ОГС в виде трилатерации представляет собой геодезическое построение, состоящее из треугольников или геодезических четырёхугольников, в которых измерены только длины линий и один примычный угол между исходными дирекционными углами и стороной сети.

Cхема построения ОГС в виде городской трилатерации

Схема построения 1 ступени ОГС в виде линейно-угловой сети

Если в геодезической сети измерены все углы и длины линий, то такое построение называется линейно-угловой сетью, один из вариантов которой представлен на рис. 1.4

Новые возможности при построении опорных геодезических сетей открываются при использовании GPS – технологий. Этот метод основан на измерении псевдодальностей от наземных GPS-приёмников до спутников орбиты которых известны с высокой точностью /3,4,23/.

При использовании этих технологий возможна лучевая или сетевая схема построения на местности GPS-сети.

При использовании лучевой схемы построения ОГС базовый GPS-приёмник работает только на исходном пункте городского геодезического обоснования, а второй GPS-приёмник последовательно устанавливается на определяемые пункты ОГС.

В результате измерений GPS-аппаратурой вычисляются приращения координат между исходным пунктом с известными координатами в заданной координатной системе и определяемыми пунктами ОГС.

Отметим главное достоинство GPS-технологий – отсутствие необходимости иметь прямую оптическую видимость между пунктами ОГС. Недостатком лучевого способа построения ОГС является отсутствие контроля качества измерений.

Поэтому на практике построения ОГС с использованием системы GPS применяют сетевой метод, приведенный на рисунке 1.6

Контролем качества выполненных спутниковых определениях в таких построениях является выполнение координатных условий во всех образованных GPS-измерениями геометрических фигурах.

В соответствии с нормативными документами ко всем ступеням ОГС, которые создавались традиционными наземными способами предъявляют требования, которые приведены в следующей таблице.

Требования к параметрам опорных геодезических сетей

Табл.1.2

Параметры

Класс сети

2

3

4

Проектирование

400

300

300

S(км)

7-20

5-8

2-5

Построение на местности

m

1.0”

1.5”

2.0”

f

4.0”

6.0”

8.0”

m/B

1:300000

1:200000

1:200000

Оценка точности

m/S

1:20000

1:120000

1:70000

В таблице приняты следующие обозначения:

m - СКО измеренного угла; f - предельно допустимая угловая невязка в треугольнике; m/B - СКО измерения стороны; m/S - СКО наиболее слабой стороны; - минимальное значение связующего угла в треугольнике.

При построении GPS-сетей существует только рекомендуемое ограничение на длины линий между GPS-приемниками, которые не должны превышать 15км.

При проектировании ОГС и их построении на городской территории существуют следующие особенности:

1. Первая ступень ОГС создаётся в местной системе координат с одним исходным пунктом, расположенным, как правило, в центре города (это необходимо для минимизации поправок за редуцирование линейных измерений с поверхности относимости на плоскость в проекции Гаусса-Крюгера);

2. Линейные измерения редуцируются на поверхность относимости, которая соответствует средней отметке городской территории (это необходимо для минимизации поправок за редуцирование линейных измерений с физической поверхности земли на поверхность относимости);

3. Городская территория характеризуется сильным рефракционным полем с большим числом локальных температурных полей. Поэтому угловые измерения при определенных условиях могут выполняться по рефракционно опасным направлениям (например, температура по Новосибирску изменяется от периферии к центру до 5-6 градусов, а локальные температурные поля могут отличаться от общегородского поля на величину до 10-15 градусов);

4. Геодезические центры, которыми закрепляют ОГС, располагаются на крышах зданий. Здания подвержены осадкам и деформациям. Поэтому геодезические пункты могут терять свою стабильность и, как следствие, изменять значение своих координат.

5. При несовпадении центра визирного барабана геодезического знака над центром знака ОГС в измеренные значения направлений необходимо вводить поправки за редукцию.