Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Силовая Электроника. Маругин / СЭ / Силовоя эл.3.05.14-стр 248 отпечатано (Восстановлен).doc
Скачиваний:
4005
Добавлен:
27.03.2016
Размер:
21.73 Mб
Скачать

1.4.5. Запираемые тиристоры

Запираемые тиристоры являются одними из последних разработок в процессе конструирования и производства силовых электронных ключей.

Запираемый тиристор (gate turn off thyristor— GТО) — тиристор, который может быть переключен из открытого состояния в закрытое и, наоборот, открыт путем подачи на управляющий электрод сигналов соответствующей полярности. Для выключения запираемых тиристоров (ЗТ) достаточно подать на его управляющий электрод импульс тока отрицательной полярности. Четырехслойные структуры типа р-п-р-п запираемого и обычного тиристоров подобны. Это четырехслойные полупроводниковые приборы с тремя силовыми выводами. Требования к их конструктивному исполнению различны. Более того, реализация процесса эффектив­ного запирания ЗТ потребовала более сложной технологии их производства. Поэ­тому долгое время они не применялись, так как коммутируемая ими мощность была существенно меньше по сравнению с мощностью, коммутируемой традици­онными тиристорами. В настоящее время запираемые тиристоры являются одними из наиболее мощных электронных, полностью управляемых ключей. Наиболее существенным изменением в конструкции современных ЗТ по срав­нению с тиристорами стало изменение катодных эмиттеров, в основу которой было положено максимальное увеличение поверхности протекания электронно-дырочной плазмы от управляющего электрода к катоду при одновременном сокра­щении путей ее протекания. Это достигнуто созданием сильноразветвленного катода, выполненного из большого числа сегментов, расположенных в виде кон­центрических окружностей, имеющих общий контакт с управляющим электро­дом. Сегмент катода обычно имеет длину 2—3 мм, а ширину 100—300 мкм. При выключении ЗТ быстрое увеличение запирающего тока управляющего электрода приводит к быстрому уменьшению тока катода и выключению ЗТ.

В настоящее время существуют три группы модификаций GТО, блокирующие обратное напряжение: симметричные ЗТ, способные блокировать равные прямое и обратное напряжение; асимметричные ЗТ, не выдерживающие обратное напряжение; обратно проводящие ЗТ, проводящие ток в обратном направлении, так как в них входят быстродействующие диоды.

Для повышения отключающей способности и минимизации емкостей у цепей формирования траектории переключения вплоть до их полного исключения был создан прибор с использованием драйвера малой индуктивности, называемый тиристор, коммутируемый по управлению (gate commutated thyristor — GСТ). Полный ключ, объединяющий GСТ и элементы драйвера очень низкой индуктив­ности, называется коммутируемым тиристором с интегрированным управлением (integrated date commutated thyristor — IGCT). Главное различие между GТО (ЗТ) и тиристорами GСТ и IGCT заключается в переводе полного анодного тока с катода на управляющий электрод за очень короткое время. Пре­имуществом такого принципа выключения GTO и IGCT является существенное повышение их быстродействия. Кроме того, становится возможным осуществить коммутацию без ЦФТП (в современной технической литературе используется термин «коммутация без снаббера» или «безснабберная коммутация»).

Максимальное значение отрицательного тока выключения рассчитыва­ется из наиболее тяжелых условий коммутации. Оно соизмеримо с выключаемым током и составляет примерно 30 % максимально допустимого значения запирае­мого тока. Например, для GТО SSGA30I 4502 фирмы АВВ при максимальном токе 3000 А ток составляет примерно 600—800 А в зависимости от параметров снаббера. Однако энергия выключения за один импульс Eвыкл незначительна и составляет 18—24 Дж за один импульс [6].

Оптотиристоры (LTT), запираемые тиристоры (GTO) и ком­мутируемые по затвору запираемые тиристоры (GCT, IGCT) являются производными тиристорных техноло­гий и находят применение в мегаваттном диапазоне мощностей. В настоя­щее время для LTT достигнуты пре­дельные параметры 8 кВ/4 кА, для GCT — 4,5 кВ. К 2014 году планирует­ся производство GCT на 11кВ. Будет развиваться и совершенствоваться технология IGCT — объединение на одной пла­стине GCT с обратным диодом в таб­леточных корпусах с плавающими прижимными контактами, конструк­тивно объединённых с платой управ­ления (драйвером). В будущем класс тиристоров все же будет частично за­менён и, возможно, полностью вытес­нен высоковольтными IGBT. Тиристо­ры в комбинации с MOSFET-структурами, такие как MCT, MTO и EST, всё же не нашли широкого применения. В настоящее время они нашли частичное применение в схемах с мяг­кой коммутацией.

В приборах типов GСТ и IGCT отрицательный ток выключения очень быстро достигает значений анодного тока. Поэтому они относятся к приборам с коэффи­циентом усиления по выключению, равным единице, а также к категории запирае­мых тиристоров с «жестким» выключением.

В настоящее время созданы запираемые тиристоры с максимальными значени­ями напряжения до 6 кВ и тока до 6 кА. Различные модификации запираемых тиристоров GСТ могут успешно исполь­зоваться для последовательного соединения или без снабберной работы.

Тиристоры, в которых МОП- транзисторы участвуют в выключении, называются МОП- управляемыми тиристорами (МСТ). Эти тиристоры являются интегральными приборами, которые состоят из десятков тысяч ячеек, имеющих электрические связи. Соотношение числа тиристорных ячеек и подключенных к ним МОП- транзисторов зависит от модификации исполнения МСТ.

На рис. 1.31 представлена эквивалентная схема одной из модификаций МСТ.

Схема Р-МСТ состоит из биполярных транзисторов VT1 и VТ2, соединенных

по схеме, эквивалентной одно операционному тиристору, и двух полевых транзисто­ров (ПТ). Полевой транзистор p-канального типа работает на включение, ну а n-канального типа — на выключение. Согласно эквивалентной схеме полевые транзисторы обеспечивают регенеративные процессы переключения тирис­тора за счет обратных связей с биполярными структурами. Включение Р-МСТ осу­ществляется подачей отрицательного относительно анода импульса напряжения на управляющий электрод G при наличии прямого напряжения иАСF, приложен­ного к Р-МСТ. При этом происходит включение МОП- транзистора ПТвкл., который отпирает транзистор VT1, что вызывает включение транзистора VТ2 в режиме регенерации, как в одно операционном тиристоре. В результате Р-МСТ переходит в проводящее состояние, которое сохраняется после снятия импульса управления.

а б

Рис. 1.31. МОП- управляемый тиристор (Р-МСТ):

а — эквивалентная схема; б — обозначение

Выключение Р-МСТ осуществляется подачей положительного импульса на управляющий электрод относительно анода, что приводит к включению транзис­тора ПТвкл. и разрыву его обратной связи с транзистором VT1 (коллектор VT2 — база VТ1). В результате происходит выключение схемы Р-МСТ.

Вопросы для самоконтроля

  1. Объясните принцип работы тиристора с помощью двухтранзисторной модели. В чем заключается положительная обратная связь?

  2. Почему отсутствие тока управляющего электрода не приводит к выключению тиристора?

  3. Какое прямое напряжение может выдержать тиристор при отсутствии импульса управления?

  4. Какими кривыми входной ВАХ ограничен импульс управления тиристором?

5. Какие условия необходимо создать для отпирания тиристора?