Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КУРСОВАЯ РАБОТА №1.doc
Скачиваний:
44
Добавлен:
19.03.2016
Размер:
2.77 Mб
Скачать

2.2 Круговорот углекислого газа, азота, кислорода и водорода

Углекислый газ входит в состав всех органических веществ, а поэтому его круговорот наиболее распространен в природе. Он осуществляется при помощи трех групп организмов: продуцентов, консументов, редуцентов. Органическое вещество синтезируется зелеными растениями в процессе фотосинтеза из углекислого газа атмосферы, содержание которого равно лишь 0,03-0,04%. В гидросфере СО2 растворен в воде, и общее его содержание намного превышает атмосферное. Океан служит мощным буфером регуляции СО2 в атмосфере: при повышении в воздухе его концентрации увеличивается поглощение углекислого газа водой. Углекислый газ атмосферы и гидросферы представляет собой обменный фонд в круговороте углерода, откуда его черпают наземные растения и водоросли. Фотосинтез лежит в основе всех биологических круговоротов на Земле. Высвобождение фиксированного углерода происходит в ходе дыхательной активности самих фотосинтезирующих организмов и всех гетеротрофов – бактерий, грибов, животных, включающихся в цепи питания за счет живого или мертвого органического вещества.

Рис.3 Круговорот углерода в биосфере (по Б. Болину, 1972)

Особенно активно происходит возврат в атмосферу СО2 из почвы, где сосредоточена деятельность многочисленных групп деструкторов и редуцентов и осуществляется дыхание корневых систем растений. Этот интегральный процесс обозначается как «почвенное дыхание» и вносит существенный вклад в пополнение обменного фонда СО2 в воздухе. Параллельно с процессами минерализации органического вещества в почвах образуется гумус – богатый углеродом сложный и устойчивый молекулярный комплекс. Гумус является носителем почвенного плодородия, поскольку разрушается определенными группами микроорганизмов медленно и постепенно, обеспечивая равномерное питание растений. Гумус почв является одним из важных резервуаров углерода на суше. В тех условиях, где деятельность деструкторов тормозится факторами внешней среды (например, при возникновении анаэробного режима в почвах и на дне водоемов), органическое вещество, накопленное растительностью, не разлагается, превращаясь со временем в такие породы, как каменный или бурый уголь, торф, сапропели, горючие сланцы и другие, богатые накопленной солнечной энергией. Они пополняют собой резервный фонд углерода. В биологическом круговороте участвуют лишь доли процента углерода от общего его количества на Земле. Углерод атмосферы и гидросферы многократно проходит через живые организмы. Растения суши способны исчерпать его запасы в воздухе за 4–5 лет, запасы в почвенном гумусе – за 300–400 лет. Основной возврат углерода в обменный фонд происходит за счет деятельности живых организмов, и лишь небольшая часть его (тысячные доли процента) компенсируется выделением из недр Земли в составе вулканических газов. В настоящее время мощным фактором перевода углерода из резервного в обменный фонд биосферы становится добыча и сжигание огромных запасов горючих ископаемых. Благодаря увеличению сгорания горючих веществ содержание углекислого газа в атмосфере удвоится. Такие быстрые изменения содержания углекислого газа в атмосфере, вследствие которого происходит так называемый парниковый эффект (нагревание атмосферы инфракрасными лучами, благодаря содержанию в ней СО2), может привести к перегреву географической оболочки. Последствия чего для судьбы человеческого общества усиленно обсуждаются и требуют научно обоснованного прогнозирования.

Азот, который является олицетворением белковой жизни в биосфере в основном сосредоточенный в атмосфере, где его часть составляет около 78%. То есть на 1 га поверхности Земли приходится толща воздуха с приблизительно 80 тыс. т азота. Однако в таком виде он недоступен растениям. В круговороте соединений азота очень большое значение отводится микроорганизмам и азотофиксаторам. Только благодаря им элементарный азот с воздуха поступает в почву. Наибольшую роль в этих процессах играют пузырчатые бактерии, которые тесно сотрудничают с бобовыми растениями. При высоком урожае этих растений можно обогатить почву около 400 кг азота на 1 га. Если даже урожай этих растений будет вывезен с поля, значительная часть азота останется с корнями в почве. Количество азота, связанного биологическим круговоротом, является неодинаковым в разных экосистемах. Например, на пропаханной земле – 7-28 кг/га за год, на сенокосах с участием злаковых трав и бобовых – 73-865, а в лесах – 58-594 кг/га за год. Подобным образом некоторые лишайники фиксируют азот при помощи симбиотических сине-зеленых водорослей.

Рис.4 Круговорот азота в биосфере (по К. Делвичу, 1972)

Известно, что Ю. Либих (1843) сформулировал утверждение, согласно которому растения могут полностью обеспечить свои потребности азотом, который поступает в землю вместе с атмосферными осадками (27 кг/га). Однако уже через несколько лет В.И. Лавес и И.Г. Гильберт, изучив баланс азота в плодоношении, доказали, что дополнительный внос азота в почву является необходимым, что признал и сам Ю. Либих. Возникновение в атмосфере окисей азота связано с газовыми электрическими разрядами. Эти кислоты вместе с атмосферными осадками попадают в почву. Количество азота, которое она получает, является очень разным и зависит, прежде всего, от климатических условий, особенно от количества и частоты осадков, времен года, температуры и др. В умеренном климате это количество составляет несколько килограммов за год, а в тропическом, где наблюдается частые бури, его значительно больше, но в среднем не более 10 кг. В атмосферу азот в определенных количествах поступает с почв. Это происходит с участием микроорганизмов во время минерализации органической материи, когда в процессе аммонификации выделяется аммиак. Биологическая фиксация молекулярного азота микроорганизмами, как теми, что свободно передвигаются, так и симбионтами (пузырчатыми), происходит в автотрофном и гетеротрофном блоках биогеоценозов. Для круговорота азота необходимыми является молибден, который в отдельных случаях выступает как лимитирующий фактор. Несмотря на огромные запасы этого элемента в атмосфере и в осадочной оболочке литосферы, в круговороте принимает участие только фиксированный микроорганизмами азот. В большой круговорот все время поступает часть азота в виде разных соединений, которые реками выносятся в моря. Азотосодержащие соединения используются водорослями для синтеза органических веществ и поступает в круговорот океана, часть постепенно оседает на дно. То есть вынос азота на суше не увеличивает его концентрации в морской воде. В биомассе Мирового океана этих элементов в 1000 раз меньше. Если рассматривать круговорот азота в масштабах биосферы, то благодаря саморегулирующим механизмам и обратной связи он считается достаточно идеальным. Часть азота, который производится в густонаселенных районах, в пресной воде и мелководных морях, выносится в глубоководные океанические отложения и остается там, исключаясь на миллионы лет с круговорота. Эти потери компенсируются поступлением азота в воздух с вулканическими газами.

Современная промышленность удобрений фиксирует азот атмосферы в размерах, превышающих природную азотфиксацию в целях увеличения продукции сельскохозяйственных растений. Высокие дозы азотных удобрений приводят, однако, к вымыванию нитратов в грунтовые воды, водоемы и в конечном счете – питьевую воду, а также к избытку их в продуктах питания, что является опасным для человека. Таким же источником загрязнений служат сточные воды с высоким содержанием аммония. На его окисление до нитратов тратится растворенный в воде кислород, что часто бывает губительно для гидробионтов. Таким образом, деятельность человека все сильнее влияет на круговорот азота, в основном в сторону превышения перевода его в связанные формы над процессами возврата в молекулярное состояние.

Кислород и водород входят в состав всех органических соединений. Они поглощаются продуцентами в составе воды и углекислого газа в процессе фотосинтеза, всеми другими организмами, с органическим веществом, созданным продуцентами, во время дыхания (из атмосферы или водного раствора) и потребления питьевой воды. как конечные продукты биологического круговорота, водород и часть кислорода возвращается в неживую среду так же в виде воды, а кислород, кроме того, выделяется в молекулярной форме в атмосферу растениями-продуцентами как один из конечных продуктов фотосинтеза. Накопление кислорода в атмосфере и гидросфере происходит в геологической истории в результате неполной замкнутости цикла углерода. На полное разложение органического вещества, создаваемого растениями, требуется точно такое же количество кислорода, которое выделилось при фотосинтезе. Захоронение органики в осадочных породах, углях, торфах послужило основой поддержания обменного фонда кислорода в атмосфере. Весь имеющийся в ней кислород проходит полный цикл через живые организмы примерно за 2000 лет.

В настоящее время значительная часть кислорода атмосферы связывается в результате работы транспорта, промышленности и других форм антропогенной деятельности. По расчетам, человечество тратит уже более 10 млрд. т свободного кислорода из общего количества в 430–470 млрд. т поставляемых процессами фотосинтеза. Если учесть, что в обменный фонд поступает лишь небольшая часть фотосинтетического кислорода, деятельность людей в этом отношении начинает приобретать угрожающие масштабы.