Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физиология 2 часть.docx
Скачиваний:
164
Добавлен:
19.03.2016
Размер:
773.23 Кб
Скачать

10. Иннервация гладких мышц. Мультиунитарные и моноутинарные мышцы.

Иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой – симпатическими и пара­симпатическими нервными волокнами, терминали которых формируют варикозные расширения на гладкомышечных клетках. Гладкие миоциты функционируют не изолированно, а клеточными комплексами. Клетки контактируют друг с другом при помощи нексусов. Последние способствуют про­ведению возбуждения от клетки к клетке, охватывая сразу группу миоцитов. В составе комплексов есть также мио­циты-пейсмекеры, которые сами генерируют потенциал дей­ствия и передают его соседним клеткам. Вокруг каждого гладкого миоцита из ретикулярных, эластических и коллагеновых волокон образуется сетка – эн­домизий. Группы из 10-12 клеток объединяются в мышечные пласты, окруженные соединительной тканью с кровеносными сосудами и нервами, называемой перимизием. В органах пучки мышечных клеток формируют слои мышечной ткани. Совокупность пучков образует мышцу, которая окружена более толстой прослойкой соединительной ткани – эпими­зием. При повышенной функциональной нагрузке гладкие миоциты гипертрофируются, как, например, в матке во время беременности, проявляя высокую способность к физиологи­ческой регенерации. При репаративной регенерации восста­новление возможно за счет деления малодифференцирован­ных миоцитов, которые находятся в составе мышечных ком­плексов, а также из адвентициальных клеток и миофиброб­ластов.

Каждая гладкомышечная клетка может сокращаться не зависимо от окружающих ее гладкомышечных клеток. Так как данный тип гладких мышц ведет себя как множество независимых клеток, он был назван «мультиунитарные гладкие мышцы». Таким образом, нервная система способна довольно тонко контролировать мультиунитарные гладкие мышцы. Как правило, потенциалы действия в данном типе гладких мышц в ответ на нервные импульсы не генерируются, но клетка отвечает на возбуждение медленной деполяризацией и соответствующим сокращением. Общий ответ всей мышцы зависит от количества возбужденных клеток и от частоты нервных импульсов. Мультиунитарные гладкие мышцы образуют радужную оболочку и цилиарные мышцы глаза, пиломоторы в коже, а также мышечные слои бронхов и крупных артерий. В отличие от мультиунитарных, гладкие мышцы большинства органов имеют тесные межклеточные контакты, так называемые нексусы. Нексусы осуществляют электрическое взаимодействие между соседними клетками, в результате чего множество клеток может сокращаться синхронно. Вследствие того, что данные гладкомышечные клетки сокращаются как единое целое, этот тип гладкомышечных клеток был назван «унитарные гладкие мышцы»

11.Механизм сокращения гладких и скелетных мышц.

Скелетные мышцы:  Сокращение инициируется в результате повышения цитоплазматической концентрации Са2+. При связывании ионов Са2+с тропонином изменяется его конформация, благодаря чему тропомиозин смещается, открывая доступ к участкам связывания на молекулах актина; поперечные мостики связываются с тонкими филаментами: - повышение цитоплазматической концентрации Са2+ запускается потенциалом действия плазматической мембраны. Потенциал действия распространяется вглубь волокна вдоль поперечных трубочек к саркоплазматическому ретикулуму и вызывает высвобождение Са2+ из ретикулума; - расслабление мышечного волокна после сокращения происходит в результате активного обратного транспорта Са2+ из цитоплазмы в саркоплазматический ретикулум. Окончания двигательного аксона образуют нервно-мышечные соединения с мышечными волокнами двигательной единицы соответствующего мотонейрона. Каждое мышечное волокно иннервируется ветвью только одного мотонейрона: - АЦХ, высвобождаемый из двигательных нервных окончаний при поступлении потенциала действия мотонейрона, связывается с рецепторами двигательной концевой пластинки мышечной мембраны; открываются ионные каналы, пропускающие Na+ и К+, благодаря чему концевая пластинка деполяризуется; - одного потенциала действия мотонейрона достаточно, чтобы вызвать потенциал действия в волокне скелетной мышцы. Существует определенная последовательность процессов, ведущих к сокращению скелетного мышечного волокна.  Понятие «сокращение» относится к включению рабочего цикла поперечных мостиков. Изменяется ли при этом длина мышцы, зависит от действия на нее внешних сил.

При активации мышечного волокна возможны три типа сокращения: - изометрическое сокращение, когда мышца генерирует напряжение, но ее длина не меняется; - изотоническое сокращение, когда мышца укорачивается, перемещая нагрузку; - удлиняющее сокращение, когда внешняя нагрузка заставляет мышцу удлиняться во время сократительной активности.

Гладкие мышцы: Гладкомышечные волокна - веретенообразные клетки без поперечной исчерченности, с одним ядром, способны к делению. Они содержат актиновые и миозиновые филаменты и сокращаются посредством механизма скользящих нитей. Повышение концентрации Са2+ в цитоплазме ведет к связывания Са2+ с кальмодулином. Затем комплекс Са2+-кальмодулин связывается с киназой легких цепей миозина, активируя этот фермент, фосфорилирующий миозин. Только после фосфорилирования гладкомышечный миозин может связываться с актином и осуществлять циклические движения поперечных мостиков. Миозин гладких мышц гидролизует АТФ с относительно низкой скоростью, поэтому гладкие мышцы укорачиваются гораздо медленнее, чем поперечно-полосатые. Однако напряжение в расчете на единицу площади поперечного сечения для гладкой мышцы такое же, как для поперечно-полосатой.

Ионы Са2+, инициирующие сокращение гладкой мышцы, поступают из двух источников: саркоплазматического ретикулума и внеклеточной среды. В результате открывания кальциевых каналов плазматической мембраны и саркоплазматического ретикулума, которое опосредуется различными факторами, Са2+ поступает в цитоплазму.