Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ лаб №9.doc
Скачиваний:
3
Добавлен:
01.03.2016
Размер:
164.86 Кб
Скачать

3.1. Методы прекращения горения. Огнегасящие средства

Как отмечалось ранее, горючая система в действии должна состоять из трёх компонентов: горючего вещества, окислителя и источника зажигания. Отсутствие или удаление одного из компонентов приводит к невозможности загорания или к прекращению горения. Таким образом, можно выделить три метода прекращения горения в чистом виде:

удаление от зоны горения или изоляция горючего вещества от воздуха;

уменьшение содержания кислорода в зоне горения до 12…15 % (прекращение доступа окислителя);

удаление из зоны горения источника горения (уменьшение температуры в зоне горения до температуры ниже температуры воспламенения горючего вещества);

Использование ингибиторов, тормозящих скорость химической реакции в пламени.

В основу всех огнегасящих средств может быть положен один из указанных методов прекращения горения или, чаще, их комбинация с превалирующим влиянием одного из них.

Вещества или материалы, при помощи которых достигается прекращение горения, называются огнетушащими или огнегасящими средствами. Наиболее распространёнными огнегасящими средствами является вода, различные пены, углекислый газ, песок, химические соединения в виде порошков и эмульсионных смесей.

В основу тушения водой в основном положен третий метод прекращения горения. Вода отнимает от горящего вещества тепло, снижая температуру в зоне горения ниже температуры воспламенения горящего вещества, вследствие чего горение прекращается. Но, кроме этого, вода под напором способна дробить и забивать пламя, образующийся при испарении воды пар затрудняет доступ воздуха в зону горения. Один литр воды при испарении из зоны горения поглощает 2500 дж тепла, образуя при этом 170 литров пара.

Противопожарное водоснабжение предприятий обеспечивается системой противопожарного водопровода, который, как правило, объединяется с хозяйственно-питьевым водопроводом. Забор воды из внутреннего водопровода в здании для тушения пожара осуществляется через пожарные краны (ПК). Их устанавливают на высоте 1,35 м над полом в коридорах, вестибюлях, проходах и других доступных местах на расстоянии 38 м один от другого. Каждый ПК снабжён пожарным рукавом, длиной 10 или 20 м со стволом, установленным в шкафчике. На шкафчике должна быть надпись ПК, порядковый номер крана, номер телефона ближайшей пожарной части. Через каждые шесть месяцев ПК должен проверяться на работоспособность посредством пуска воды.

Водой нельзя тушить:

нефтепродукты (бензин, керосин и др.), т.к. они всплывают и, растекаясь, увеличивают площадь горения;

электроустановки под напряжением, т.к. вода хорошо проводит электрический ток, что создаёт опасность поражения людей электрическим током;

карбид кальция, негашёную известь и другие вещества, которые вступают с водой в химические реакции с выделением взрывчатых газов, например, ацетилена, либо выделяется большое количество тепла, от которого могут воспламениться находящиеся вблизи горючие материалы.

В качестве огнегасящих средств широко используют химическую и воздушно-механическую пены. Пены характеризуются кратностью и стойкостью.

Кратность пены – это отношение объёма пены к объёму жидкостей, из которых она (пена) получена.

Стойкость пены – это время от момента получения пены до полного её распада.

Химическая пена состоит из пузырьков углекислого газа. Воздушно-механическая пена содержит пузырьки воздуха.

Химическая пена получается в огнетушителях при взаимодействии кислотного и щелочного растворов и в специальных пеногенераторах при смешивании порошков, состоящих из кислотной и щелочной частей. Выделяющийся при взаимодействии углекислый газ в присутствии пенообразующего вещества образуют густую пену из пузырьков с прочными плёнками. Пена через пожарный рукав и пенный ствол или пенослив выбрасывается в очаг горения. Примерный состав химической пены в %:

Углекислого газа - 80

Вода - 19,7

Пенообразующего вещества - 0,3

При тушении пожаров горючих жидкостей пена, покрывая их поверхности, изолирует от окружающего воздуха, а углекислый газ, освобождающийся при разрыве пузырьков пены, снижает концентрацию кислорода в воздухе.

Воздушно-механическая пена образуется при смешивании воздуха, воды и пенообразователей ПО-1, ПО-6 и др. Кратность пены до 10. В пене содержится примерно 90 % воздуха и 10 % водного раствора с пенообразователем. Стойкость воздушно-механической пены меньше, чем химической, причём стойкость уменьшается с повышением кратности пены.

Эффективным средством тушения пожаров является углекислота. Углекислый газ – одно из распространенных в природе веществ, без цвета и запаха, в 1,5 раза тяжелее воздуха. При температуре 0 0С и давлении 3,6 МПа (36 ат) переходит в жидкое состояние и называется углекислотой. При быстром испарении углекислоты образуется твёрдая снегообразная углекислота, которая затем переходит в газообразное состояние. Один литр углекислоты образует 500 л углекислого газа. Углекислый газ оказывает изоли- рующее и охлаждающее действие. В среде углекислого газа 30…35 % по объёму с воздухом горение большинства веществ прекращается. Углекислота нетокопроводна и, испаряясь, не оставляет после себя следов. Её применяют для тушения электрооборудования, двигателей внутреннего сгорания, ценных материалов в архивах, библиотеках и в других случаях.

Высокоэффективными средствами пожаротушения является галлоидированные углеводороды и составы на их основе. Их применение основано на способе химического торможения реакции горения, ингибировании. К ним относятся: бромистый этил, бромистый метилен, огнетушащие составы 3,5 и 7.

Бромистый этил – жидкость в 1,5 раза тяжелей воды. Температура кипения +38,4 0С, замерзания – минус 123 0С. При испарении 1 л жидкости получается 400 л пара. Пары бромистого этила в 6,5 раза тяжелее воздуха.

Бромистый метилен – жидкость в 2,5 раза тяжелее воды. Температура кипения +98 0С, замерзания – минус 52,5 0С. При испарении 1 л жидкости получается 550 л пара. Пары бромистого метилена в 5,85 раза тяжелее воздуха, в девять раз эффективнее углекислоты.

Огнетушащий состав 3,5 – смесь бромистого этила и углекислоты. В пропорции по объёму 70 и 30 %, соответственно. Внутреннее давление в баллонах для этого состава ниже, чем у углекислоты, что позволяет облегчить баллоны. Огнетушащий состав 3,5 в 3,5 раза эффективнее углекислоты, поэтому и получил такое название.

Огнетушащий состав 7 – смесь бромистого метилена и бромистого этила. Из 1 л раствора получается 430 л пара. Состав эффективнее углекислоты в 7 раз.

Порошковые составы на основе карбонатов и бикарбонатов натрия применяют для ликвидации небольших очагов пожара при горении веществ, неподдающихся тушению водой или другими огнетушащими средствами. Огнегасящий порошок на поверхности горящего материала создаёт слой, препятствующий окислительным процессам. Несмотря на их высокую стоимость и сложность в хранении порошок является единственным средством тушения пожаров щелочных металлов и металлоорганических соединений.