Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИИС_лекции / Лекции / Лекции 6-8.docx
Скачиваний:
381
Добавлен:
01.03.2016
Размер:
1.12 Mб
Скачать

Тема Вейвлет-преобразования.

Лекции 6-8

Масштабирующие функции. Ортогональное, непрерывное и дискретное вейвлет-преобразование.

Задачи оценки и аппроксимации. Двумерное и многомерное вейвлет-преобразования и обработка изображений (удаление шумов, обработка растровых изображений).

Многомасштабное представление поверхностей для вейвлет-анализа. Вейвлет-сжатие сигналов, изображений, видеоизображений.

Вейвлетное преобразование сигналов является обобщением спектрального анализа, типичный представитель которого – классическое преобразование Фурье. Термин "вейвлет" (wavelet) в переводе с английского означает "маленькая (короткая) волна". Вейвлеты - это обобщенное название семейств математических функций определенной формы, которые локальны во времени и по частоте, и в которых все функции получаются из одной базовой (порождающей) посредством ее сдвигов и растяжений по оси времени. Вейвлет-преобразования рассматривают анализируемые временные функции в терминах колебаний, локализованных по времени и частоте. Как правило, вейвлет-преобразования (WT) подразделяют на дискретное (DWT) и непрерывное (CWT).

DWT используется для преобразований и кодирования сигналов, CWT - для анализа сигналов. Вейвлет-преобразования в настоящее время принимаются на вооружение для огромного числа разнообразных применений, нередко заменяя обычное преобразование Фурье. Это наблюдается во многих областях, включая молекулярную динамику, квантовую механику, астрофизику, геофизику, оптику, компьютерную графику и обработку изображений, анализ ДНК, исследования белков, исследования климата, общую обработку сигналов и распознавание речи.

Вейвлетный анализ представляет собой особый тип линейного преобразования сигналов и физических данных. Базис собственных функций, по которому проводится вейвлетное разложение сигналов, обладает многими специфическими свойствами и возможностями. Вейвлетные функции базиса позволяют сконцентрировать внимание на тех или иных локальных особенностях анализируемых процессов, которые не могут быть выявлены с помощью традиционных преобразований Фурье и Лапласа. К таким процессам в геофизике относятся поля различных физических параметров природных сред. В первую очередь это касается полей температуры, давления, профилей сейсмических трасс и других физических величин.

Вейвлеты имеют вид коротких волновых пакетов с нулевым средним значением, локализованных по оси аргументов (независимых переменных), инвариантных к сдвигу и линейных к операции масштабирования (сжатия/растяжения). По локализации во временном и частотном представлении вейвлеты занимают промежуточное положение между гармоническими функциями, локализованными по частоте, и функцией Дирака, локализованной во времени.

Теория вейвлетов не является фундаментальной физической теорией, но она дает удобный и эффективный инструмент для решения многих практических задач. Основная область применения вейвлетных преобразований – анализ и обработка сигналов и функций, нестационарных во времени или неоднородных в пространстве, когда результаты анализа должны содержать не только частотную характеристику сигнала (распределение энергии сигнала по частотным составляющим), но и сведения о локальных координатах, на которых проявляют себя те или иные группы частотных составляющих или на которых происходят быстрые изменения частотных составляющих сигнала. По сравнению с разложением сигналов на ряды Фурье вейвлеты способны с гораздо более высокой точностью представлять локальные особенности сигналов, вплоть до разрывов 1-го рода (скачков). В отличие от преобразований Фурье, вейвлет-преобразование одномерных сигналов обеспечивает двумерную развертку, при этом частота и координата рассматриваются как независимые переменные, что дает возможность анализа сигналов сразу в двух пространствах.

Одна из главных и особенно плодотворных идей вейвлетного представления сигналов на различных уровнях декомпозиции (разложения) заключается в разделении функций приближения к сигналу на две группы: аппроксимирующую - грубую, с достаточно медленной временной динамикой изменений, и детализирующую - с локальной и быстрой динамикой изменений на фоне плавной динамики, с последующим их дроблением и детализацией на других уровнях декомпозиции сигналов. Это возможно как во временной, так и в частотной областях представления сигналов вейвлетами.

История спектрального анализа восходит к И. Бернулли, Эйлеру и Фурье, который впервые построил теорию разложения функций в тригонометрические ряды. Однако это разложение долгое время применялось как математический прием и не связывалось с какими-либо физическими понятиями. Спектральные представления применялись и развивались сравнительно узким кругом физиков–теоретиков. Однако, начиная с 20-х годов прошлого века, в связи с бурным развитием радиотехники и акустики, спектральные разложения приобрели физический смысл и практическое применение. Основным средством анализа реальных физических процессов стал гармонический анализ, а математической основой анализа - преобразование Фурье. Преобразование Фурье разлагает произвольный процесс на элементарные гармонические колебания с различными частотами, а все необходимые свойства и формулы выражаются с помощью одной базисной функции exp(jt) или двух действительных функций sin(t) и cos(t). Гармонические колебания имеют широкое распространение в природе, и поэтому смысл преобразования Фурье интуитивно понятен независимо от математической аналитики.

Преобразование Фурье обладает рядом замечательных свойств. Областью определения преобразования является пространство L2интегрируемых с квадратом функций, и многие физические процессы в природе можно считать функциями, принадлежащими этому пространству. Для применения преобразования разработаны эффективные вычислительные процедуры типа быстрого преобразования Фурье (БПФ). Эти процедуры входят в состав всех пакетов прикладных математических программ и реализованы аппаратно в процессорах обработки сигналов.

Было также установлено, что функции можно разложить не только по синусам и косинусам, но и по другим ортогональным базисным системам, например, полиномам Лежандра и Чебышева, функциям Лагерра и Эрмита. Однако практическое применение они получили только в последние десятилетия ХХ века благодаря развитию вычислительной техники и методов синтеза цифровых линейных систем обработки данных. Непосредственно для целей спектрального анализа подобные ортогональные функции не нашли широкого применения из-за трудностей интерпретации получаемых результатов. По тем же причинам не получили развития в спектральном анализе функции типа "прямоугольной волны" Уолша, Радемахера, и пр.

Теоретические исследования базисных систем привели к созданию теории обобщенного спектрального анализа, которая позволила оценить пределы практического применения спектрального анализа Фурье, создала методы и критерии синтеза ортогональных базисных систем. Иллюстрацией этому является активно развивающаяся с начала 80-х годов прошлого столетия теория базисных функций типа вейвлет. Благодаря прозрачности физической интерпретации результатов анализа, сходной с "частотным" подходом в преобразовании Фурье, ортогональный базис вейвлетов стал популярным и эффективным средством анализа сигналов и изображений в акустике, сейсмике, медицине и других областях науки и техники.

Вейвлет-анализ является разновидностью спектрального анализа, в котором роль простых колебаний играют функции особого рода, называемые вейвлетами. Базисная функция вейвлет – это некоторое "короткое" колебание, но не только. Понятие частоты спектрального анализа здесь заменено масштабом, и, чтобы перекрыть "короткими волнами" всю временную ось, введен сдвиг функций во времени. Базис вейвлетов – это функции типа ((t-b)/a), гдеb- сдвиг, а – масштаб. Функция(t) должна иметь нулевую площадь и, еще лучше, равными нулю первый, второй и прочие моменты. Фурье-преобразование таких функций равно нулю при=0 и имеет вид полосового фильтра. При различных значениях масштабного параметра 'a' это будет набор полосовых фильтров. Семейства вейвлетов во временной или частотной области используются для представления сигналов и функций в виде суперпозиций вейвлетов на разных масштабных уровнях декомпозиции (разложения) сигналов.

Рис. 1.1.1.

Первое упоминание о подобных функциях (которые вейвлетами не назывались) появилось в работах Хаара (Haar) еще в начале прошлого века. Вейвлет Хаара - это короткое прямоугольное колебание на интервале [0,1], показанное на рис. 1.1.1. Однако он интересен больше теоретически, так как не является непрерывно дифференцируемой функцией и имеет длинные "хвосты" в частотной области. В 30-е годы физик Пол Леви (Paul Levy), исследуя броуновское движение, обнаружил, что базис Хаара лучше, чем базис Фурье, подходит для изучения деталей броуновского движения.

Сам термин "вейвлет", как понятие, ввели в своей статье Дж. Морле и А. Гроссман (J. Morlet, A. Grossman), опубликованной в 1984 г. Они занимались исследованиями сейсмических сигналов с помощью базиса, который и назвали вейвлетом. Весомый вклад в теорию вейвлетов внесли Гуппилауд, Гроссман и Морле, сформулировавшие основы CWT, Ингрид Добеши, разработавшая ортогональные вейвлеты (1988), Натали Делпра, создавшая время-частотную интерпретацию CWT (1991), и многие другие. Математическая формализация вейвлетов в работах этих и других авторов привела к созданию теоретических основ вейвлет-анализа, названного мультиразрешающим (кратномасштабным) анализом.

В настоящее время специальные пакеты расширений по вейвлетам присутствуют в основных системах компьютерной математики (Matlab, Mathematica, Mathcad, и др.), а вейвлет-преобразования и вейвлетный анализ используются во многих областях науки и техники для самых различных задач. Многие исследователи называют вейвлет-анализ "математическим микроскопом" для точного изучения внутреннего состава и структур неоднородных сигналов и функций.

Не следует рассматривать вейвлет-методы обработки и анализа сигналов в качестве новой универсальной технологии решения любых задач. Возможности вейвлетов еще не раскрыты полностью, однако это не означает, что их развитие приведет к полной замене традиционных средств обработки и анализа информации, хорошо отработанных и проверенных временем. Вейвлеты позволяют расширить инструментальную базу информационных технологий обработки данных.

Аналитика вейвлетных преобразований сигналов определяются математической базой разложения сигналов, которая аналогична преобразованиям Фурье. Основной отличительной особенностью вейвлет-преобразований является новый базис разложения сигналов - вейвлетные функции. Свойства вейвлетов принципиально важны как для самой возможности разложения сигналов по единичным вейвлетным функциям, так и для целенаправленных действий над вейвлетными спектрами сигналов, в том числе с последующей реконструкцией сигналов по обработанным вейвлетным спектрам.

Вейвлеты могут быть ортогональными, полуортогональными, биортогональными. Вейвлетные функции могут быть симметричными, асимметричными и несимметричными, с компактной областью определения и не имеющие таковой, а также иметь различную степень гладкости. Некоторые функции имеют аналитическое выражение, другие – быстрый алгоритм вычисления вейвлет-преобразования. Для практики желательно было бы иметь ортогональные симметричные и асимметричные вейвлеты, но таких идеальных вейвлетов не существует. Наибольшее применение находят биортогональные вейвлеты.

Базисными функциями вейвлет-преобразований могут быть самые различные функции с компактным носителем - модулированные импульсами синусоиды, функции со скачками уровня и т.п. Они обеспечивает хорошее отображение и анализ сигналов с локальными особенностями, в том числе со скачками, разрывами и перепадами значений с большой крутизной.

Было бы желательно иметь такое вейвлет-преобразование сигналов, которое обеспечивало полную информационную эквивалентность вейвлетного спектра сигналов временному представлению и однозначность декомпозиции - реконструкции сигналов. Однако это возможно только при использовании ортогональных и биортогональных вейвлетов. Для качественного анализа сигналов и локальных особенностей в сигналах может применяться более обширная номенклатура вейвлетных функций, которые хотя и не обеспечивают реконструкцию сигналов, но позволяют оценить информационное содержание сигналов и динамику изменения этой информации.

Определение вейвлета. К вейвлетам относятся локализованные функции, которые конструируются из одного материнского вейвлета (t) (или по любой другой независимой переменной) путем операций сдвига по аргументу (b) и масштабного изменения (а):

ab(t) = (1/) ((t-b)/a), (a, b)R, (t)L2(R).

где множитель (1/) обеспечивает независимость нормы функций от масштабного числа 'a'.

Непрерывное вейвлет-преобразование сигнала s(t)L2(R), которое применяется для качественного частотно-временного анализа, по смыслу соответствует преобразованию Фурье с заменой гармонического базиса exp(-jt) на вейвлетный ((t-b)/a):

С(a, b) = s(t), ab(t) = (1/)s(t)((t-b)/a) dt, (a, b)R, a0.

Вейвлетный масштабно-временной спектр С(a,b) в отличие от фурье-спектра является функцией двух аргументов: масштаба вейвлета 'а' (в единицах, обратных частоте), и временного смещения вейвлета по сигналу 'b' (в единицах времени), при этом параметры 'а' и 'b' могут принимать любые значения в пределах областей их определения.

Рис. 24.1.1. Вейвлеты Mhat и Wave.

На рис. 24.1.1 приведены примеры простейших неортогональных вейвлетов четного (Mhat) и нечетного (Wave) типов.

Для количественных методов анализа в качестве вейвлетных базисов можно использовать любые локализованные функции (t), если для них существуют функции-двойники #(t), такие, что семейства {ab(t)} и {ab(t)} могут образовывать парные базисы функционального пространства L2(R). Вейвлеты, определенные таким образом, позволяют представить любую произвольную функцию в пространстве L2(R) в виде ряда:

s(t) = С(a,b)ab(t), (a, b)I,

где коэффициенты С(a,b) – проекции сигнала на вейвлетный базис пространства:

С(a,b) = s(t), ab(t) =s(t)ab(t) dt.

Если вейвлет (t) обладает свойством ортогональности, то (t) ≡ (t) и вейвлетный базис ортогонален. Вейвлет может быть неортогональным, однако если он имеет двойника, и пара ((t), (t)) дает возможность сформировать семейства {mk(t)} и {zp(t)}, удовлетворяющие условию биортогональности на целых числах I:

mk(t), zp(t) = mz·kp, m,k,z,p Î I,

то возможно разложение сигналов на вейвлетные ряды с обратной формулой реконструкции.

Свойства вейвлета,

  • Локализация. Вейвлет должен быть непрерывным, интегрируемым, иметь компактный носитель и быть локализованным как во времени (в пространстве), так и по частоте. Если вейвлет в пространстве сужается, то его "средняя" частота повышается, спектр вейвлета перемещается в область более высоких частот и расширяется. Этот процесс должен быть линейным – сужение вейвлета вдвое должно повышать его "среднюю" частоту и ширину спектра также вдвое.

  • Нулевое среднее значение, т.е. выполнение условия для нулевого момента:

(t) dt = 0,

что обеспечивает нулевое усиление постоянной составляющей сигналов, нулевое значение частотного спектра вейвлета при =0, и локализацию спектра вейвлета в виде полосового фильтра с центром на определенной (доминирующей) частоте 0.

  • Ограниченность. Необходимое и достаточное условие:

||(t)||2 =|(t)|2 dt < 

  • Автомодельность базиса или самоподобие. Форма всех базисных вейвлетов ab(t) должна быть подобна материнскому вейвлету (t), т.е. должна оставаться одной и той же при сдвигах и масштабировании (растяжении/сжатии), иметь одно и то же число осцилляций.

Отображение преобразования. Результатом вейвлет-преобразования одномерного числового ряда (сигнала) является двумерный массив значений коэффициентов С(a,b). Распределение этих значений в пространстве (a,b) - временной масштаб, временная локализация, дает информацию об изменении во времени относительного вклада в сигнале вейвлетных компонент разного масштаба и называется спектром коэффициентов вейвлет-преобразования, масштабно-временным (частотно-временным) спектром или просто вейвлет-спектром (wavelet spectrum).

Спектр C(a,b) одномерного сигнала представляет собой поверхность в трехмерном пространстве. Способы визуализации спектра могут быть самыми различными. Наиболее распространенный способ – проекция на плоскость ab с изолиниями (изоуровнями), что позволяет проследить изменения коэффициентов на разных масштабах во времени, а также выявить картину локальных экстремумов этих поверхностей ("холмов" и "впадин"), так называемый "скелет" (skeleton) структуры анализируемого процесса. При широком диапазоне масштабов применяются логарифмические координаты (log a, b). Пример вейвлетного спектра простейшего сигнала при его разложении вейвлетом Mhat приведен на рис. 24.1.2.

Рис. 24.1.2. Сигнал, вейвлетный Mhat - спектр и масштабные сечения спектра.

По вертикальным сечениям (сечениям сдвига b) вейвлет-спектр отражает компонентный состав сигнала (из данного комплекта вейвлетов) в каждый текущий момент. По смыслу преобразования, как скалярного произведения сигнала с вейвлетом, ясно, что значения коэффициентов в каждой текущей временной точке по масштабным сечениям тем больше, чем сильнее корреляция между вейвлетом данного масштаба и поведением сигнала в окрестностях этой точки. Соответственно, сечения по параметру 'а' демонстрируют изменения в сигнале компоненты данного масштаба 'a' со временем.

Вейвлетные составляющие сигнала в сечениях его спектра не имеют ничего общего с синусоидами, и представлены, как правило, сигналами достаточно сложной и не всегда понятной формы, что может затруднять их наглядное представление и понимание.

Вейвлетные функции. Выбор анализирующего вейвлета определяется тем, какую информацию необходимо извлечь из сигнала. С учетом характерных особенностей различных вейвлетов во временном и в частотном пространстве, можно выявлять в анализируемых сигналах те или иные свойства и особенности, которые незаметны на графиках сигналов, особенно в присутствии шумов. При этом задача реконструкции сигнала может и не ставится, что расширяет семейство используемых регулярных вейвлетных функций, в том числе неортогональных. Более того, вейвлет может конструироваться непосредственно под ту локальную особенность в сигнале, которая подлежит выделению или обнаружению, если ее форма априорно известна.

При анализе сигналов вейвлетами четного типа (симметричными или близкими к симметричным) гармоническим сигналам обычно соответствуют яркие горизонтальные полосы вейвлетных пиков и впадин на доминирующих частотах вейвлетов, совпадающих с частотой гармоник сигналов. Нарушения гладкости сигналов фиксируются вертикальными полосами, пики в сигналах выделяются максимумами, а впадины – минимумами вейвлетных коэффициентов. Напротив, вейвлеты нечетного типа более резко реагируют на скачки и быстрые изменения в сигналах, отмечая их максимумами или минимумами в зависимости от знака дифференциалов. Чем резче выражены особенности сигналов, тем сильнее они выделяются на спектрограммах.

Для конструирования таких вейвлетов часто используются производные функции Гаусса, которые имеют наилучшую локализацию как во временной, так и в частотной областях. В общей форме уравнение базового вейвлета:

n(x) = (-1)n+1 dn[exp(-x2/2)]/dxn, n ≥ 1, (24.1.1)

WАVE-вейвлет вычисляется по первой производной (n=1) и приведен на рис. 24.1.3 во временной и частотной области для трех значений масштабных коэффициентов 'а'. Форма вейвлета относится к нечетным функциям и, соответственно, спектр вейвлета является мнимым. Уравнение вейвлета по (24.1.1) с единичной нормой:

. (24.1.2)

Рис. 24.1.3. Вейвлет Wave.

На рис. 24.1.4 приведен пример применения вейвлета для анализа двух однотипных сигналов, один из которых осложнен шумами с мощностью на уровне мощности самого сигнала. Как следует из рисунка, контурная масштабно-временная картина вейвлетных коэффициентов, а равно и ее сечения на больших значениях масштабных коэффициентов 'а' очень точно и уверенно фиксирует положение вершины информационного сигнала сменой знака коэффициентов С(a,b).

Рис. 24.1.4.

МНАТ-вейвлет (Mexican hat – мексиканская шляпа) вычисляется по второй производной (n=2) и приведен на рис. 24.1.5. Вейвлет симметричен, спектр вейвлета представлен только действительной частью и хорошо локализован по частоте, нулевой и первый моменты вейвлета равны нулю. Применяется для анализа сложных сигналов. Уравнение вейвлета по (24.1.1):

. (24.1.3)

Рис. 24.1.5. Вейвлет MHAT.

На рис. 24.1.6 приведен пример использования вейвлета для анализа сложного сигнала y(t). Модель сигнала образована суммой сигналов разной структуры. Сигналы у1-у2 представляют собой функции Гаусса разного масштабного уровня, сигнал у3 - прямоугольный импульс, сигнал у4 задан в виде тренда с постоянным значением дифференциала. На контурном графике вейвлет-коэффициентов можно видеть выделение всех трех основных структур сигнала при полном исключении тренда. Особенно четко выделяются границы скачков прямоугольной структуры. Справа на рисунке приведена полная трехмерная картина вейвлет-преобразования.

Рис. 24.1.6.

Вейвлет широко используется в двумерном варианте для анализа изотропных полей. На его основе возможно также построение двумерного неизотропного базиса с хорошей угловой избирательностью при добавлении к сдвигам и масштабированию вейвлета его вращения.

Рис. 24.1.7.

При повышении номера производной функции (24.1.1) временная область определения вейвлета несколько увеличивается при существенном повышении доминирующей частоты вейвлета и степени его локализации в частотной области. Вейвлеты n-го порядка позволяют анализировать более тонкие высокочастотные структуры сигналов, подавляя низкочастотные компоненты. Пример вейвлета по восьмой производной приведен на рис. 24.1.7.

Рис. 24.1.8.

Практическое следствие повышения степени локализации вейвлетов в частотной области наглядно видно на рис. 24.1.8 на примере преобразования той же функции, что и на рис. 24.1.6. Сравнение рисунков показывает существенное повышение чувствительности вейвлета к высокочастотным составляющим сигнала на малых масштабных коэффициентах.

Свойства вейвлет-преобразования

Результаты вейвлет-преобразования, как скалярного произведения вейвлета и сигнальной функции, содержат комбинированную информацию об анализируемом сигнале и самом вейвлете. Получение объективной информации о сигнале базируется на свойствах вейвлет-преобразования, общих для вейвлетов всех типов. Рассмотрим основные из этих свойств. Для обозначения операции вейвлет-преобразования произвольных функций s(t) будем применять индекс TW[s(t)].

Линейность.

TW[·s1(t)+·s2(t)] = ·TW[s1(t)]+·TW[s2(t)]. (24.2.1)

Инвариантность относительно сдвига. Сдвиг сигнала во времени на t0 приводит к сдвигу вейвлет-спектра также на t0:

TW[s(t-to)] = C(a, b-to). (24.2.2)

Инвариантность относительно масштабирования. Растяжение (сжатие) сигнала приводит к сжатию (растяжению) вейвлет-спектра сигнала:

TW[s(t/аo)] = (1/ао)·C(a/ао,b/аo). (24.2.3)

Дифференцирование.

dn{TW[s(t)]}/dtn = TW[dn(s(t))/dtn]. (24.2.4)

TW[dn(s(t))/dtn] = (-1)ns(t) [dn((t))/dtn] dt. (24.2.5)

Если анализирующий вейвлет задан формулой, то это может быть очень полезным для анализа сигналов. Проанализировать особенности высокого порядка или мелкомасштабные вариации сигнала s(t) можно дифференцированием нужного числа раз либо вейвлета, либо самого сигнала.

Аналог теоремы Парсеваля для ортогональных и биортогональных вейвлетов.

s1(t)·s2*(t) = Ca-2 С(a,b) С*(a,b) da db. (24.2.6)

Отсюда следует, что энергия сигнала может вычисляться через коэффициенты вейвлет-преобразования.

Определения и свойства одномерного непрерывного вейвлет-преобразования обобщаются на многомерный и на дискретный случаи.

24.3. Вейвлет-преобразование простых сигналов.

Вейвлет-преобразование, выполняемое при анализе сигналов для выявления в них каких-либо особенностей и места их локализации без обратной реконструкции, допускает применение любых типов вейвлетов, как ортогональных, так и неортогональных. Чаще всего для этих целей используются симметричные вейвлеты. Ниже приводятся результаты применения вейвлета Mhat для анализа сигналов простых форм. Вычисления выполнены с вейвлетом (24.1.3) по формуле:

с(a,b) =s(t)(t,a,b), (24.3.1)

где суммирование выполняется в растворе угла влияния (по области достоверности) с шагом t = b = a = 1. Так как при непрерывном разложении скейлинг-функция не используется, отсчет значений 'а' начинается с 1, а ряд коэффициентов c(0,b) оставляется нулевым и определяет нулевой фон контурных графиков спектра.

Импульсы Кронекера (положительный и отрицательный), вейвлет-спектр импульсов и сечения спектра на трех значениях параметра 'а' приведены на рис. 24.3.1. Цветовая гамма спектра здесь и в дальнейшем соответствует естественному цветоряду от красного (большие значения) к фиолетовому (малые значения коэффициентов).

Рис. 24.3.1. Преобразование импульсов Кронекера.

На сечениях спектра видно, что свертка единичных импульсов с разномасштабными вейвлетами повторяет форму вейвлетов, как это и положено при операции свертки. Соответственно, линии максимальных экстремумов на сечениях ("хребты" и "долины", в зависимости от полярности) определяют временное положение импульсов, а боковые экстремумы противоположной полярности образуют характерные лепестки в конусе угла влияния, который хорошо выражен.

Рис. 24.3.2. Преобразование функций Лапласа.

Аналогичный характер спектра сохраняется и для любых локальных неоднородностей на сигналах в форме пиков (рис. 24.3.2) со смещением максимумов (минимумов) коэффициентов с(a,b) со значений а=1 в область больших значений 'а' (в зависимости от эффективной ширины пиков).

Рис. 24.3.3. Преобразование функций Гаусса.

На рис. 24.3.3 приведен спектр функций Гаусса. При сглаживании вершин пиковых неоднородностей форма цветовых конусов также сглаживается, но "хребтовые" ("долинные") линии достаточно точно фиксируют на временной оси положение центров локальных неоднородностей.

Рис. 24.3.4. Преобразование перепада постоянного значения функций.

На рис. 24.3.4 приведены спектры двух разных по крутизне перепадов постоянных значений функции. Центры перепадов фиксируются по переходу через нуль значений коэффициентов c(a,b), а крутизна перепадов отражается, в основном, на значениях функции c(a,b) при малых значениях параметра 'а'.

При изломах функций спектрограммы уверенно фиксируют место изломов максимумами (минимумами) значений коэффициентов c(a,b), как это показано на рис. 24.3.5. При наложении на такие функции шумов точное определение места изломов по масштабным сечениям на малых значениях параметра 'а' становится невозможным, однако на больших значениях параметра 'а' такая возможность сохраняется, естественно, с уменьшением точности локализации.

Рис. 24.3.5. Преобразование изломов функций.

Аналогичный характер имеет влияние шумов и на другие локальные сигналы (рис. 24.3.1-24.3.4). Если спектральные особенности сигналов распространяются на диапазон значений параметра 'а', то имеется возможность идентификации этих сигналов и их места на временной оси.

Рис. 24.3.6. Преобразование гармонических функций.

Разделение гармонических функций на масштабной оси спектров, в том числе при наложении сильных шумовых процессов, приведено в примерах на рис. 24.3.6. Приведенный пример имеет чисто иллюстративный характер, так как для выделения гармонических процессов с постоянной частотой во времени целесообразно использовать спектральный анализ и частотные полосовые фильтры. Тем не менее, для локальных сигналов, типа модулированных гармоник, вейвлет-спектры достаточно хорошо показывают место их локализации на временной оси.

Рис. 24.3.7. Изменение фазы гармонического сигнала.

На рис. 24.3.7 приведен пример еще одной характерной особенности гармонического сигнала – изменение его фазы на 180о, которое хорошо фиксируется на всех масштабах вейвлета, а, следовательно, достаточно легко определяется даже в присутствии сильных шумовых сигналов.

При наложении синусоидальных сигналов на тренд вейвлет-преобразование на больших масштабах позволяет достаточно уверенно выделять характерные особенности тренда. Пример выделения изломов тренда приведен на рис. 24.3.8.

Рис. 24.3.8. Преобразование суммы трех сигналов.

Форма вейвлета (четность или нечетность), доминирующая частота и степень ее локализации существенно влияют на вейвлет-спектры анализируемых сигналов и на возможности выделения его локальных особенностей. На нижеследующих рисунках приведены сравнительные спектры простых сигналов при использовании вейвлетов Wave (нечетный, рис. 24.1.3), Mhat (четный, рис. 24.1.5) и вейвлета по 8-й производной Гаусса (рис. 24.3.9-24.3.16), который также является четным, и имеет в 4 раза более высокую доминирующую частоту, чем вейвлет Mhat.

Рис. 24.3.9. Импульсы Кронекера.

Рис. 24.3.10. Пики Лапласа.

Рис. 24.3.11. Функции Гаусса.

Рис. 24.3.12. Крутые скачки.

Рис. 24.3.13. Сглаженные скачки.

Рис. 24.3.14. Изломы функций

Рис. 24.3.15. Фазовые скачки гармоник.

Рис. 24.3.16. Сумма двух модулированных синусоид.

При анализе произвольных сигналов использование разнотипных вейвлетов позволяет повысить достоверность выделения локальных особенностей сигналов.

Принцип вейвлет-преобразования.Гармонические базисные функции преобразования Фурье предельно локализованы в частотной области (до импульсных функций Дирака при Т) и не локализованы во временной (определены во всем временном интервале от -до). Их противоположностью являются импульсные базисные функции типа импульсов Кронекера, которые предельно локализованы во временной области и "размыты" по всему частотному диапазону. Вейвлеты по локализации в этих двух представлениях можно рассматривать как функции, занимающие промежуточное положение между гармоническими и импульсными функциями. Они должны быть локализованными как во временной, так и в частотной области представления. Однако при проектировании таких функций мы неминуемо столкнемся с принципом неопределенности, связывающим эффективные значения длительности функций и ширины их спектра. Чем точнее мы будем осуществлять локализацию временного положения функции, тем шире будет становиться ее спектр, и наоборот, что наглядно видно на рис. 1.1.5.

Отличительной особенностью вейвлет-анализа является то, что в нем можно использовать семейства функций, реализующих различные варианты соотношения неопределенности. Соответственно, исследователь имеет возможность гибкого выбора между ними и применения тех вейвлетных функций, которые наиболее эффективно решают поставленные задачи.

Вейвлетный базис пространства L2(R), R(-,), целесообразно конструировать из финитных функций, принадлежащих этому же пространству, которые должны стремиться к нулю на бесконечности. Чем быстрее эти функции стремятся к нулю, тем удобнее использовать их в качестве базиса преобразования при анализе реальных сигналов. Допустим, что такой функцией является psi - функцияt, равная нулю за пределами некоторого конечного интервала и имеющая нулевое среднее значение по интервалу задания. Последнее необходимо для задания локализации спектра вейвлета в частотной области. На основе этой функции сконструируем базис в пространстве L2(R) с помощью масштабных преобразований независимой переменной.

Функция изменения частотной независимой переменной в спектральном представлении сигналов отображается во временном представлении растяжением/сжатием сигнала. Для вейвлетного базиса это можно выполнить функцией типа (t) =>(amt), a = const, m = 0, 1, … , M, т.е. путем линейной операции растяжения/сжатия, обеспечивающей самоподобие функции на разных масштабах представления. Однако локальность функции(t) на временной оси требует дополнительной независимой переменной последовательных сдвигов функции(t) вдоль оси, типа(t) =>(t+k), для перекрытия всей числовой оси пространства R(-,). C учетом обеих условий одновременно структура базисной функции может быть принята следующей:

(t) => (amt+k). (1.1.10)

Для упрощения дальнейших выкладок значения переменных m и kпримем целочисленными. При приведении функции (1.1.10) к единичной норме, получаем:

mk(t) = am/2 (amt+k). (1.1.11)

Если для семейства функций mk(t) выполняется условие ортогональности:

nk(t),lm(t)=nk(t)·*lm(t) dt =nl·km, (1.1.12)

то семейство mk(t) можно использовать в качестве ортонормированного базиса пространства L2(R). Произвольную функцию этого пространства можно разложить в ряд по базисуmk(t):

s(t) =Smkmk(t), (1.1.13)

где коэффициенты Smk– проекции сигнала на новый ортогональный базис функций, как и в преобразовании Фурье, определяются скалярным произведением

Smk = s(t), mk(t) =s(t)mk(t) dt, (1.1.14)

при этом ряд равномерно сходиться:

||s(t) –Smkmk(t),|| = 0.

При выполнении этих условий базисная функция преобразования (t) называется ортогональным вейвлетом.

Простейшим примером ортогональной системы функций такого типа являются функции Хаара. Базисная функция Хаара определяется соотношением

(t) =( 1.1.15)

Легко проверить, что при а = 2, m = 0, 1, 2, ..., k = 0, 1,2, … две любые функции, полученные с помощью этого базисного вейвлета путем масштабных преобразований и переносов, имеют единичную норму и ортогональны. На рис. 1.1.6 приведены примеры функций для первых трех значений m и b при различных их комбинациях, где ортогональность функций видна наглядно.

Рис. 1.1.6. Функции Хаара

Вейвлетный спектр, в отличие от преобразования Фурье, является двумерным и определяет двумерную поверхность в пространстве переменныхmиk. При графическом представлении параметр растяжения/сжатия спектра m откладывается по оси абсцисс, параметр локализации k по оси ординат – оси независимой переменной сигнала. Математику процесса вейвлетного разложения сигнала в упрощенной форме рассмотрим на примере разложения сигнала s(t) вейвлетом Хаара с тремя последовательными по масштабу m вейвлетными функциями с параметром а=2, при этом сам сигнал s(t) образуем суммированием этих же вейвлетных функций с одинаковой амплитудой с разным сдвигом от нуля, как это показано на рис. 1.1.7.

Рис. 1.1.7. Скалярные произведения сигнала с вейвлетами.

Для начального значения масштабного коэффициента сжатия m определяется функция вейвлета (1(t) на рис. 1.1.7), и вычисляется скалярное произведение сигнала с вейвлетом1(t), s(t+k)с аргументом по сдвигу k. Для наглядности результаты вычисления скалярных произведений на рис. 1.1.7 построены по центрам вейвлетных функций (т.е. по аргументу k от нуля со сдвигом на половину длины вейвлетной функции). Как и следовало ожидать, максимальные значения скалярного произведения отмечаются там, где локализована эта же вейвлетная функция.

После построения первой масштабной строки разложения, меняется масштаб вейвлетной функции (2 на рис. 1.1.7) и выполняется вычисление второй масштабной строки спектра, и т.д.

Как видно на рис. 1.1.7, чем точнее локальная особенность сигнала совпадает с соответствующей функцией вейвлета, тем эффективнее выделение этой особенности на соответствующей масштабной строке вейвлетного спектра. Можно видеть, что для сильно сжатого вейвлета Хаара характерной хорошо выделяемой локальной особенностью является скачок сигнала, причем выделяется не только скачок функции, но и направление скачка.

На рис. 1.1.8 приведен пример графического отображения вейвлетной поверхности реального физического процесса /4/. Вид поверхности определяет изменения во времени спектральных компонент различного масштаба и называется частотно-временным спектром. Поверхность изображается на рисунках, как правило, в виде изолиний или условными цветами. Для расширения диапазона масштабов может применяться логарифмическая шкала.

Рис. 1.1.8. Пример вейвлетного преобразования

Соседние файлы в папке Лекции