Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Организация потока информации в клетке

.docx
Скачиваний:
191
Добавлен:
10.02.2016
Размер:
19.72 Кб
Скачать

Поток информации

Благодаря наличию потока информации клетка, используя многовековой эволюционный опыт предков, создает органи­зацию, соответствующую критериям живого, сохраняет и поддержива­ет эту организацию во времени, несмотря на меняющиеся условия внешней среды, передает ее в ряду поколений.

В потоке информации участвуют

ядро (ДНК хромосом),

макромолекулы, переносящие информацию в цитоплазму (иРНК), цитоплазматический аппарат транскрипции (рибосомы и полисомы, тРНК, ферменты активации аминокислот).

Кроме ядерного генома, основного по объему заключенной информации, в эукариотических клетках функционируют также геномы митохондрий, а в зеленых растениях и хлоропластов.

Из приведенной схемы видно, что в рассматриваемом потоке происходит перенос информации с ДНК на белок. Что представляют собой коды, с помощью которых записана информация в ДНК и белке? Каков механизм перекодирования?

Кодирование заключается в записи определенных сведений при помощи специальных символов с целью придать информации компактность, обеспечить ее использование неоднократно и по частям, создать удобства при транспортировке. Типичный пример кодирова­ния — фиксация человеческой мысли в виде письменного текста. В процессе кодирования путем сочетаний символов составляют кодовые группы, служащие для обозначения существенного элемента информации. Весь объем сообщения представлен опреде­ленной последовательностью кодовых групп. Совокупность символов составляет алфавит, а совокупность кодовых групп словарь кода.

Символами кода ДНК служат дезоксирибонуклеотиды, различаю­щиеся по азотистому основанию (адениловое, гуаниловое, тимидиловое, цитидиловое), поэтому алфавит четырехбуквенный. Кодовой группой служит кодон — участок молекулы ДНК, состоящий из трех нуклеотидов. Это делает код триплетным. Информация записывается в линейном порядке по длине молекулы ДНК в виде последовательности кодонов. Код ДНК неперекрывающийся, так как каждый нуклеотид

входит в один кодон. Он не имеет запятых и в пределах блока информа­ции, соответствующего, например, одному полипептиду, кодоны сле­дуют друг за другом без перерывов.

Символом кода белка служат аминокислоты. Они же соответству­ют и кодовым группам. Информация также записывается в линейном порядке по длине молекулы полипептида в виде последовательности аминокислот.

Сопоставление участка молекулы ДНК как начального пункта и отвечающего ему по содержанию полипептида как завершающего пункта потока информации указывает на коллинеарность кодов ДНКи белка: кодоны следуют в том же порядке, что и остатки аминокислот, кодируемых ими.

Положение конкретного аминокислотного остатка в молекуле полипептада может. Сочетанием по три из четырех возможных дезоксирибонуклеотидов образуются 64 различных кодона, тогда как в состав белка входит 20 аминокислот.

Три кодона из 64, названные бессмысленными, не кодируют аминокислот. Они служат терминаторами и обознача­ют точку прекращения считывания информации. Код ДНК универсален в том смысле, что он тождествен у всех организмов. Единичные факты, не согласующиеся с таким заключени­ем, касаются деталей пунктуации (например, обозначения начала считывания у кишечной палочки и в клетке млекопитающего) и считывания бессмысленных кодонов.

Перекодирование информации происходит в процессе биосинтеза белка. На первом этапе, обозначаемом как транскрипция, исходная информация ДНК считывается путем синтеза рибонуклеиновых кислот. Последние комплементарны лишь одной из полинуклеотидных цепей ДНК, место тимина в них занимает близкое х нему азотистое основание — урацил. В эукариотической клетке этот этап осуществляется в ядре, а также независимо в митохондриях и хлоропластах. В результате тран­скрипции образуется несколько разновидностей РНК, при этом иРНК приобретает информацию о последовательности аминокислот в поли­пептидах, а рРНК и тРНК обеспечивают перенос информации с иРНК на полипептиды.

Особенность транскрипции с ядерной ДНК эукариотической клетки заключается в образовании первоначально большего количества РНК, чем то, которое затем примет в синтезе полипептидов непосред­ственное участие. Избыточная РНК, природа и функции, которой не ясны, разрушается в ходе преобразования (процессинга) РНК перед транспортом ее из ядра в цитоплазму.

Считывание информации иРНК с переносом ее на белок (этап трансляции) происходит в цитоплазме. Центральная роль здесь принадлежит различным тРНК, которых в клетке имеется несколько десятков. Каждый образец тРНК способен присоединять определенную аминокислоту в активированном состоянии (обогащенную энергией). В результате активации аминокислоты и присоединения ее к тРНК образуется комплекс «аминоацил-тРНК». Благодаря наличию антикодона — последовательности из трех нуклеотидов, комплементарных нуклеотидам кодона данной аминокислоты — тРНК узнает место этой аминокислоты в полипептиде в соответствии с последовательностью кодонов иРНК. Так как перенос информации на белок осуществляется не с ДНК, а с иРНК, кодоны определенных аминокислот обозначают в соответствии с нуклеотидным составом РНК, Таким образом, именно тРНК считывает информацию с иРНК.

Сборка молекул полипептида происходит на рибосоме, которая обеспечивает требуемое расположение участников процесса трансляции: иРНК, комплексов «аминоацил-тРНК» и «тРНК-строящийся поли­пептид». Представление о функции рибосом дает рибосомный цикл синтеза белка.

Функционирующая рибосома состоит из большой и малой субъединиц и молекулы иРНК. В одном из двух ее активных учас­тков — пептидальном (I) происходит наращивание полипептида, а к другому — аминоацильному (II) прикрепляются тРНК с активиро­ванными аминокислотами. Комплекс «аминоацил-тРНК», прибывший первым, инициирует считывание и занимает участок I. В участке II фиксируется второй аналогичный комплекс, соответствующий пер­вому смысловому коду иРНК. После образования между амино­кислотами пептидной связи тРНК участка I высвобождается. На ее место в виде комплекса с двумя аминокислотными остатками перемещается тРНК, занимающая участок II. К участку II при-1 соединяется очередной комплекс «аминоацил-тРНК», отвечающий следующему смысловому кодону иРНК. Описанный цикл повторяется, пока не будет достигнут терминирующий кодон иРНК (УАА, УАГ или УГА), по отношению к которому тРНК не существует. На этой стадии рибосома распадается на субъединицы с высвобождением иРНК и полипептида.

Поток энергии

Поток энергии у представителей разных групп организмов представлен внутриклеточными механизмами энергообеспече­ния — брожением, фото- или хемосинтезом, дыханием.

Центральная роль в биоэнергетике клеток животных принадлежит дыхательному обмену. Он включает реакции расщепления низкокало­рийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот и использования выделяемой энергии для синтеза высококалорийного клеточного «топлива» в виде АТФ. АТФ и другие соединения, богатые энергией в биологически утилизируемой форме, называются макроэргическими. Энергия АТФ, непосредственно или будучи перенесенной на другие макроэргические соединения, например креатинфосфат, используемый в мышцах, в разнообразных процессах преобразуется в тот или иной вид работы — химическую (синтезы), осмотическую (поддержание градиентов веществ), электрическую, механическую, регуляторную. Среди органелл такой клетки особое место в дыхательном обмене принадлежит митохондриям, с внутренней мембраной которых связаны ферменты дыхательной цепи, а также матриксу цитоплазмы, в котором протекает процесс бескислородного расщепления глюкозы — анаэроб­ный гликолиз. Из преобразователей энергии химических связей АТФ в работу наиболее изучена механохимическая система поперечнополоса­той мышцы. Она состоит из сократительных белков и фермента, расщепляющего макроэргические соединения с высвобождением энер­гии.

Особенностью потока энер­гии растительной клетки служит фотосинтез — механизм пре­образования энергии солнечного света в энергию химических связей органических веществ.

Механизмы энергообеспече­ния клетки высокоэффективны. Коэффициенты полезного дей­ствия хлоропласта достига­ют 25%, а митохондрии — 45— 60%, существенно превосходя аналогичный показатель паровой машины (8%) или двигателя внутреннего сгорания (17%).

Реакции дыхательного обме­на не только поставляют энер­гию, но и снабжают клетку строительными блоками для синтеза разно­образных молекул. Ими служат многие продукты расщепления пище­вых веществ. Особая роль в этом принадлежит центральному звену дыхательного обмена — циклу Кребса, осуществляемому в митохондриях. Другие внутриклеточные механизмы

Потоки информации, энергии и вещества осуществляются непре­рывно и составляют необходимое условие существования клетки как живой системы.

Кроме структур и процессов, прямо включенных в названные потоки, в клетке функционируют механизмы, которые, хотя и могут быть названы дополнительными, так же являются жизненно необходи­мыми. Так, лизосомы, воздействуя ферментами на пиноцитированный или аутофагированный материал, обеспечивают гидролитическое расщепление макромолекул до низкомолекулярных соединений. Они же разрушают структуры, утратившие свое функциональное значение. Пероксисомы ликвидируют возникающие в клетке перекиси, токсичные для живой протоплазмы. Организация внутриклеточных транспортных потоков обусловливается активностью микротрубочек и микрофиб­рилл.