Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен.docx
Скачиваний:
246
Добавлен:
09.02.2016
Размер:
259.87 Кб
Скачать
    1. Классификации партеногенеза

Существует несколько классификаций партеногенетического размножения.

  1. По способу размножения

  • Естественный — нормальный способ размножения некоторых организмов в природе.

  • Искусственный — вызывается экспериментально действием разных раздражителей на неоплодотворённую яйцеклетку, в норме нуждающуюся в оплодотворении.

  • По полноте протекания

    • Рудиментарный (зачаточный) — неоплодотворённые яйцеклетки начинают деление, однако зародышевое развитие прекращается на ранних стадиях. Вместе с тем в некоторых случаях возможно и продолжение развития до конечных стадий (акцидентальный или случайный партеногенез).

    • Полный — развитие яйцеклетки приводит к формированию взрослой особи. Эта разновидность партеногенеза наблюдается во всех типах беспозвоночных и у некоторых позвоночных.

  • По наличию мейоза в цикле развития

    • Амейотический — развивающиеся яйцеклетки не проделывают мейоза и остаются диплоидными. Такой партеногенез (например, у дафний) является разновидностью клонального размножения.

    • Мейотический — яйцеклетки проделывают мейоз (при этом они становятся гаплоидными). Новый организм развивается из гаплоидной яйцеклетки (самцы перепончатокрылых насекомых и коловраток), или яйцеклетка тем или иным способом восстанавливает диплоидность (например, путём эндомитоза или слияния с полярным тельцем)

  • По наличию других форм размножения в цикле развития

    • Облигатный — когда он является единственным способом размножения

    • Циклический — партеногенез закономерно чередуется с другими способами разножения в жизненном цикле (напрмер, у дафний и коловраток).

    • Факультативный — встречающийся в виде исключения или запасного способа размножения у форм, в норме двуполых.

  • В зависимости от пола организма

    • Гиногенез — партеногенез самок

    • Андрогенез — партеногенез самцов

      1. Распространенность

        1. У животных

          1. У членистоногих

    Способность к партеногенезу у членистоногих имеют тихоходки, тля, балянус, некоторые муравьи (Mycocepurus smithii) и многие другие.

          1. У позвоночных

    Партеногенез редок у позвоночных и встречается примерно у 70 видов, что составляет 0,1 % всех позвоночных животных. Например, существует несколько видов ящериц, в естественных условиях размножающихся партеногенезом (Даревскиа, комодские вараны). Партеногенетические популяции также найдены и у некоторых видов рыб, земноводных, птиц. Случаи однополого размножения пока не известны только среди млекопитающих.

    Партеногенез у комодских варанов возможен потому, что овогенез сопровождается развитием полоцита (полярного тельца), содержащего удвоенную копию ДНК яйца; полоцит при этом не погибает и выступает в качестве спермы, превращая яйцеклетку в эмбрион.

        1. У растений

    Аналогичный процесс у растений называется апомиксис.

    ПОЛОВОЙ ДИМОРФИЗМ

    (от греч. di-, в сложных словах — вдвое, дважды, и morphe — форма), различия признаков муж. и жен. особей раздельнополых видов; частный случай полиморфизма. Возникновение П. д. связано с действием полового отбора. У многоклеточных животных П. д. полностью развивается к периоду половой зрелости и связан гл. обр. с различиями в строении половых органов, а также с различием вторичных половых признаков. Различают постоянный и сезонный П. д. Постоянный — мало зависит или не зависит от сезонных условий. Он характерен для мн. беспозвоночных (особенно червей, членистоногих) и позвоночных; напр., у одних животных самцы значительно мельче самок, у других, наоборот, они крупнее. У самцов признаки П. д. бывают связаны с приспособлениями для удержания самки при копуляции (напр., присоски на передних ногах жука-плавунца), у самок — с откладыванием яиц, выкармливанием детёнышей (напр., яйцеклад у мн. насекомых, млечные железы у млекопитающих). Нередко самцы окрашены ярче самок (мн. бабочки, птицы и др.), что связано с покровительств. окраской и меньшей подвижностью самок, чаще осуществляющих заботу о потомстве. Проявлением П. д. являются и такие вторичные половые признаки, как «рога» жуков-оленей, бивни самцов нарвала и слона, рога самцов мн. оленей и др., представляющие оружие для «турнирных боёв» за самку. Сезонный П. д., или брачный наряд, проявляюшийся только в период размножения, известен у мн. рыб (напр., яркая расцветка самца у гольяна) и земноводных (напр.. развитие гребия и яркой расцветки у сампа тритона). У человека П. д., кроме различий в строении половых органов, выражается в более мощном развитии у мужчин скелета и мускулатуры, волосяного покрова на лице и ряде др. признаков, у женщин — в развитии грудных желёз, большей ширине бёдер и др. У цветковых растений постоянный П. д. наиб, ярко выражен у двудомных, напр. конопли, у к-рой муж. особи (посконь) отличаются от жен. (матерка) меньшей длиной стебля, менее густой листвой, большим выходом волокна. У ряда двудомных растений (ивы, эвкоммии и др.) П. д. выражен только в разл. строении муж. и жен. цветков.

    16.Наследственность и изменчивость - фундаментальные свойства живого, их диалектическое единство. Общее понятие о генетическом материале и его свойствах: хранение, изменение, репарация, передача, реализация генетической информации.

    Наследственность — свойство клеток или организмов в процессе самовоспроизведения передавать новому поколению способность к определенному типу обмена веществ и индивидуального развития, в ходе которого у них формируется общие признаки и свойства данного типа клеток и видов организмов, а также некоторые индивидуальные особенности родителей. Изменчивость — свойство живых систем приобретать изменения и существовать в различных вариантах. Несмотря на то, что по своим результатам наследственность и изменчивость разнонаправлены, в живой природе эти два фундаментальных свойства образуют неразрывное единство, чем достигается одновременно сохранение в процессе эволюции имеющихся биологически целесообразных качеств и возникновение новых, делающих возможным существование жизни в разнообразных условиях. Таким образом, частичный материал должен обладать способностью к самовоспроизведению, чтобы в процессе размножения передавать наследственную информацию, на основе которой будет осуществлено формирование нового поколения. Для обеспечения устойчивости характеристик в ряду поколений наследственный материал должен сохранять постоянно свою организацию. Также он должен обладать способностью приобретать изменения и воспроизводить их, обеспечивая возможность исторического развития живой материи в имеющихся условиях. Репарация — молекулярное восстановление. Механизм репарации основан на наличие в молекуле ДНК двух комплементарных цепей. Искажение последовательности нуклеотидов в одной из них обнаруживается специфическими ферментами. Затем соответствующий участок удаляется и замещается новым, синтезированным на второй комплементарной цепи ДНК. Каждая хромосома представляет собой группу сцепления, их число равно гаплоидному набору хромосом. Диплоидный набор хромосом содержит 46 хромосом.

    1. 17. Закономерности наследования, установленные Г. Менделем и их цитологические основы. Анализирующее скрещивание. Менделирующие признаки человека. Множественные аллели и полигенное наследование на примере человека.

    Закон единообразия гибридов первого поколения. При моногибридном скрещивании у гибридов первого поколения проявляются только доминантные признаки.

    Закон расщепления. При самоопылении гибридов первого поколения в потомстве происходит расщепление по фенотипу в соотношении 3:1, с образованием двух фенотипических групп (доминантной и рецессивной), расщепление по генотипу 1:2:1.

    Закон «чистоты гамет». При образовании половых клеток в каждую гамету попадает только один ген из аллельной пары. Чистота гамет обеспечивается независимым расхождением хромосом в делении мейоза.

    Ввиду того, что развитие признака у особи зависит в первую очередь от взаимодействия аллельных генов, разные его варианты, определяемые разными аллелями соответствующего гена, могут наследоваться по аутосомно-доминантному или аутосомно-рецессивному типу, если имеет место доминирование. При доминировании признака потомки от скрещивания двух гомозиготных родителей, различающихся по доминантному и рецессивному вариантам данного признака, одинаковы и похожи на одного из них – закон единообразия F1. Расщепление по фенотипу в F2 в отношении 3:1 в действительности имеет место лишь при доминировании одного аллеля над другим, когда гетерозиготы фенотипически сходны с доминантными гомозиготами – закон расщепления в F2.

    Наследование рецессивного варианта признака характеризуется тем что он не проявляется у гибридов F1, а в F2 проявляется у четверти потомков.

    .Множественный аллелизм и полигенное наследование на примере человека.

    Присутствие в генофонде вида одновременно различных аллелей гена называют множественным аллелизмом. У человека множественный аллелизм свойственен многими генам. Так, 3 аллели гена I определяют групповую принадлежность крови по системе АВО (IA, IB, IO), 2-ая аллели имеют ген, обуславливающий резус-принадлежность. Более 100 аллелей насчитывают гены α и β — полипептидов гемоглобина. Причиной множественного аллелизма является случайнее изменения структуры гена (мутации), сохраняемые в процессе естественного отбора в генофонде популяции.

    Кумулятивная полимерия. Значительная часть признаков у эукариот, наследуемых полигенно, находится под контролем не двух-трех, а большего числа генов (их количество пока еще трудно определить). При моногенном типе наследования в моногибридном скрещивании один ген проявляется в двух альтернативных состояниях без переходных форм. Такие признаки относятся к качественным, при их анализе, как правило, не проводится никаких измерений. При неаллельном взаимодействии двух несцепленных генов даже при сохранении менделевского отношения 9:3:3:1 фенотип первого поколения гибридов зависит от действия обоих генов. Однако наследование качественных признаков может определяться взаимодействием трех и более генов.

    При этом каждый из этих генов имеет свою долю влияния на развитие признака. Примером может служить наследование красной и белой окраски зерен пшеницы в опытах шведского генетика Нильсона-Эле. Результаты этих опытов были опубликованы в 1909 г.

    При скрещивании сорта пшеницы, зерна которой имели темно-красную окраску, с сортом, имеющим белые зерна, гибриды первого поколения имели красную окраску более светлых тонов. Во втором поколении получилось такое соотношение по фенотипу: на 63 окрашенных зерна с различными оттенками красного цвета приходилась 1 белое зерно (неокрашенное). Эти результаты были объяснены Нильсоном-Эле следующим образом. Темно-красная окраска зерен пшеницы обусловлена действием трех пар доминантных генов, а белая - трех пар рецессивных, при этом по мере увеличения числа доминантных генов окраска становится более интенсивной. Обозначим доминантные аллели трех генов, локализованных в разных хромосомах, прописными буквами А1 А2 А3 а рецессивные - строчными а1 а1 а3, тогда генотипы исходных форм будут: А1А1 А2А2 А3А3 x а1я1 а2а2 a33a.

    Окраска зерен у гибридов первого поколения A1a1 A2a2 A3a3 при наличии трех доминантных аллелей будет промежуточной светло-красной. При скрещивании гибридов первого поколения A1a1 A2a2 A3a3 x A1a1 A2a2 A3a3 у каждого из гибридов образуется по 8 типов гамет, поэтому во втором поколении ожидается расщепление в 64-х долях (8 х 8). Среди 63/64 растений с окрашенными зернами интенсивность окраски усиливается по мере увеличения числа доминантных аллелей различных генов в генотипе. Видимо, каждый доминантный ген способствует увеличению количества синтезированного пигмента, и в этом смысле такой признак можно отнести к количественным.

    Тип аддитивного действия генов, каждый из которых оказывает свою, часто небольшую, долю влияния на признак, называется кумулятивной полимерией. Используя решетку Пеннета, можно подсчитать частоты доминантных генов среди генотипов второго поколения. Для этого в каждой из 64 клеток вместо генотипа записывается число присутствующих в нем доминантных аллелей. Определив частоты доминантных аллелей, можно убедиться, что генотипы с числом доминантных генов 6,5,4,3, 2, 1,0 встречаются 1,6,15,20,15,6,1 раз соответственно.

    Закономерности наследования установленные Менделем. Менделирующие признаки человека.

    Закономерности наследования, установленные Г. Менделем

    Выдающийся вклад Г. Менделя в науку состоит в экспери­ментальном доказательстве наличия единиц наследственности (наслед­ственных задатков, генов) и описании их важнейших свойств — дискретности, стабильности, специфичности, аллельного состояния.

    йц

    Эти положения отражают общие принципы организации наслед­ственного материала: I) дискретное определение развития наследуемых признаков; 2) относительная стабильность наследственных единиц; 3) аллельное состояние наследственных единиц.

    Из этих принципов вытекают правила (законы) наследования, сформулированные Г. Менделем: 1) единообразие признака у гибридов первого поколения; 2) расщепление альтернативных вариантов призна­ка среди особей второго поколения; 3) независимое комбинирование признаков родителей в потомках. Генетические закономерности, впервые открытые Г. Менделем, описывают правила независимого наследования, в основе которого лежит наличие дискретных единиц наследственности генов.

    Основные понятия генетики:

    При изучении закономерностей наследования обычно скрещивают особи, отличающиеся друг от друга альтернативными признаками, например желтый и зеленый цвет, гладкая и морщинистая поверхность у горошин.

    Аллельные гены – гены, определяющие развитие альтернативных признаков. Они располагаются в одинаковых локусах гомологичных хромосом.

    Локус – место локализации гена в хромосоме.

    Альтернативный признак и соответствующий ему ген, проявляющийся у гибридов первого поколения, называется доминантным, а не проявляющийся – рецессивным, т. е.:

    Доминантность – это способность подавлять одним аллелем действие другого в гетерозиготном состоянии.

    Аллель – форма существования (проявления) гена.

    Если в обеих гомологичных хромосомах находятся одинаковые аллельные гены, такой организм называется гомозиготным, так как он образует один тип гамет и не дает расщепление при скрещивании с себе подобным.

    Если в гомологичных хромосомах локализованы разные гены одной аллельной пары, то такой организм называется гетерозиготным по данному признаку.    

    Генотип -  совокупность всех генов организма. Генотип представляет собой взаимодействующие друг с другом и влияющие друг на друга совокупности генов. Каждый ген испытывает на себе воздействие других генов генотипа и сам оказывает на них влияние, поэтому один и тот же ген в разных генотипах может проявляться по-разному.

    Несмотря на то, что уже многое известно о хромосомах и  структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена:

    а) ген как единица рекомбинации.

        На основании своих работ по построению хромосомных карт дрозофилы Морган постулировал, что ген - это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера.  Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма;

    б) ген как единица мутирования.

        В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген - это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию.

    в) ген как единица функции.

        Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта.

    Фенотип – совокупность всех свойств и признаков организма. Фенотип развивается на базе определенного генотипа в результате взаимодействия организма с условиями окружающей среды. Организмы, имеющие одинаковый генотип, могут отличаться друг от друга в зависимости от условий развития и существования.

    Фен, признак или свойство организма – это единица морфологической, физиологической, биохимической дискретности, позволяющей отличать один организм от другого.

    Геном – совокупность численности и формы хромосом и содержащихся в них генов для данного вида.

    Генофонд – это совокупность всех аллелей генов, содержащихся в популяции

    18.Виды взаимодействие неаллельных генов и аллельных генов.

    Взаимодействие неаллельных генов. Комплиментарность, эпистаз, полимерия.

    На один признак организма очень часто могут влиять несколько пар неаллельных генов.

    Взаимодействие неаллельных генов происходит по типу:

    комплементарности;

    эпистаза;

    полимерии.

    Комплементарное действие проявляется при одновременном присутствии в генотипе организмов двух доминантных неаллельных генов. Каждый из доминантных генов может проявляться самостоятельно, если другой находится в рецессивном состоянии, но их совместное присутствие в доминантном состоянии в зиготе обусловливает новое состояние признака.

    Пример. Скрещивали два сорта душистого горошка с белыми цветками. Все гибриды первого поколения имели красные цветки. Окраска цветков зависит от двух взаимодействующих генов А и В.

    Белки (ферменты), синтезированные на основе генов А и В, катализируют биохимические реакции, которые приводят к проявлению признака (красная окраска цветков).

    Эпистаз - взаимодействие, при котором один из доминантных или рецессивных неаллельных генов подавляет действие другого неаллельного гена. Ген, подавляющий действие другого, называют эпистатическим геном, или супрессором. Подавляемый ген называют гипостатическим. Эпистаз бывает доминантным и рецессивным.

    Доминантный эпистаз. Примером доминантного эпистаза может быть наследование окраски оперения у кур. Доминантный ген С отвечает за окраску оперения. Доминантный неаллельный ген I подавляет развитие окраски оперения. В результате этого куры, имеющие ген С в генотипе, в присутствии гена I имеют белое оперение: IIСС; IiСС; IiСс; Iicс. Куры с генотипом пес также будут белыми, потому что эти гены находятся в рецессивном состоянии. Оперение кур с генотипом iiCC, iiCc будет окрашено. Белая окраска оперения обусловлена присутствием рецессивного аллеля гена i или наличием гена подавителя окраски I. В основе взаимодействия генов лежат биохимические связи между белками-ферментами, которые кодируются эпистатическими генами.

    Рецессивный эпистаз. Рецессивным эпистазом объясняется бомбейский феномен - необычное наследование антигенов системы групп крови АB0. Известны 4 группы крови.

    В семье женщины с I группой крови (I0I0) от мужчины со II группой крови (IАIА) родился ребенок с IV группой крови (IAIB), что невозможно. Оказалось, что женщина унаследовала от матери ген IB, от отца ген I0. Проявил действие только ген I0, поэтому 108

    считалось, что женщина имеет I группу крови. Ген IВ был подавлен рецессивным геном х, который находился в гомозиготном состоянии - хх.

    У ребенка этой женщины подавленный ген Р проявил свое действие. Ребенок имел IV группу крови 1АIB.

    Полимерное действие генов связано с тем, что несколько неаллельных генов могут отвечать за один и тот же признак, усиливая его проявление. Признаки, зависящие от полимерных генов, относят к количественным. Гены, отвечающие за развитие количественных признаков, дают суммарный эффект. Например, за пигментацию кожи у человека отвечают полимерные неаллельные гены S1 и S2. В присутствии доминантных аллелей этих генов синтезируется много пигмента, в присутствии рецессивных - мало. Интенсивность окраски кожи зависит от количества пигмента, что определяется количеством доминантных генов.

    От брака между мулатами S1s1S2s2 рождаются дети с пигментацией кожи от светлой до темной, но вероятность рождения ребенка с белым и черным цветом кожи равна 1/16.

    Многие признаки наследуются по принципу полимерии.

    19…Сцепленное наследование. Группы сцепления. Кроссинговер. Хромосомная теория наследственности. Генетика пола. Хромосомное определение пола. Наследование признаков, сцепленных с полом.

    Наследование признаков человека сцепленных с полом.

    Морган и его сотрудники заметили, что наследо­вание окраски глаз у дрозофилы

    зависит от пола родительских особей, несущих альтернативные аллели. Красная

    окраска глаз доминирует над белой. При скрещивании красноглазого самца с

    белоглазой самкой в F1, получали равное число красноглазых самок и

    белоглазых самцов. Однако при скрещивании белоглазого самца с красноглазой

    самкой в F1 были получены в равном числе красно­глазые самцы и самки

    При скрещива­нии этих мух F1, между собой были получены

    красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной

    белоглазой самки. Тот факт, что у самцов частота про­явления рецессивного

    признака была выше, чем у самок, наводил на мысль, что рецессивный аллель,

    определяющий белоглазость, находится в Х - хромосоме, а Y - хромосома лишена

    гена окраски глаз. Чтобы проверить эту гипотезу, Морган скрестил исходного

    белоглазого самца с красноглазой сам­кой из F1. В потомстве были

    по­лучены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо

    заключил, что только Х - хромосома несет ген окраски глаз. В Y - хромосоме

    соответствующего локуса вообще нет. Это явле­ние известно под названием

    наследования, сцеплен­ного с полом.

    Гены, находящиеся в половых хромосомах, называют сцепленными с полом. В

    Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога. Поэтому у

    особей мужского пола признаки, определяемые генами этого участка, проявляются

    даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет

    объяснить наследование признаков, сцепленных с полом.

    При локализации признаков как в аутосоме, так и в Х- b Y-хромосоме

    наблюдается полное сцепление с полом.

    У человека около 60 генов наследуются в связи с Х-хромосомой, в том числе

    гемофелия, дальтонизм (цветовая слепота), мускульная дистрофия, потемнение

    эмали зубов, одна из форм агаммглобулинемии и другие. Наследование таких

    признаков отклоняется от закономерностей, установленных Г.Менделем. Х-хромосома

    закономерно переходит от одного пола к другому, при этом дочь наследует

    Х-хромосому отца, а сын Х-хромосому матери. Наследование, при котором сыновья

    наследуют признак матери, а дочери - признак отца получило, название

    крисс-кросс (или крест-накрест).

    Известны нарушения цветового

    зрения, так называемая цветовая слепота. В основе появления этих дефектов

    зрения лежит действие ряда генов. Красно-зеленая слепота обычно называется

    дальтонизмом. Еще задолго до появления генетики в конце XVIII и в XIX в. было

    установлено, что цветовая слепота наследуется согласно вполне закономерным

    правилам. Так, если женщина, страдающая цветовой слепотой, выходит замуж за

    мужчину с нормальным зрением, то у их детей наблюдается очень своеобразная

    картина перекрестного наследования. Все дочери от такого брака получат признак

    отца, т.е. они имеют нормальное зрение, а все сыновья, получая признак матери,

    страдают цветовой слепотой (а-дальтонизм, сцепленный с Х-хромосомой)

    Р Ха Ха х Ха y

    Ха Ха,y

    F1 Ха Ха, Хаy

    В том же случае, когда наоборот, отец является дальтоником, а мать имеет

    нормальное зрение, все дети оказываются нормальными. В отдельных браках, где

    мать и отец обладают нормальным зрением, половина сыновей может оказаться

    пораженными цветовой слепотой. В основном наличие цветовой слепоты чаще

    встречается у мужчин. Э.Вильсон объяснил наследование этого признака,

    предположив, что он локализовал в Х-хромосоме и что у человека гетерогаметным

    (XY) является мужской пол. Становится вполне понятным, что в браке гомозиготной

    нормальной женщины (Ха Ха) с мужчиной дальтоником (Х

    аy) все дети рождаются нормальными. Однако при этом, все дочери становятся

    скрытыми носителями дальтонизма, что может проявиться в последующих поколениях.

    Другим примером наследования сцепленного с полом, может послужить

    рецессивныйполулетальный ген, вызывающий несвертываемость крови на воздухе -

    гемофилию. Это заболевание появляется почти исключительно только у мальчиков.

    При гемофилии нарушается образование фактора VIII, ускоряющего свертывание

    крови. ген, детерминирующий синтех фактора VIII, находится в участке Х-

    хромосомы, недоминантным нормальным и рецессивным мутантным. Возможны

    следующие генотипы и фенотипы:

    Генотипы

    Фенотипы

    Хн Хн

    Нормальная женщина

    Хн Хn

    Нормальная женщина (носитель)

    Хнy

    Нормальный мужчина

    Хny

    Мужчина гемофилик

    Один из сцепленных с полом рецессивных генов вызывает особый тип мышечной

    дистрофии (тип Дюмена). Эта дистрофия проявляется в раннем детстве и

    постепенно ведет к инвалидности и смерти ранее 20-летнего возраста. Потому

    мужчины с дистрофией Дюмена не имеют потомства, а женщины гетерозиготные по

    гену этого заболевания, вполне нормальны.

    Среди доминантных признаков, связанных с Х-хромосомой, можно указать на ген,

    который вызывает недостаточность органического фосфора в крови. В результате,

    при наличии этого гена, часто развивается рахит, устойчивый к лечению

    обычными дозами витамина А. В этом случае картина сцепленного с полом

    наследования заметно отличается от того хода передачи по поколениям, который

    был описан для рецессивных болезней. В браках девяти больных женщин со

    здоровыми мужчинами среди детей была половина больных девочек и половина

    мальчиков. Здесь, в соответствии с характером наследование доминантного гена,

    в Х-хромосомах произошло расщепление в отношении 1:1:1:1.

    Другим примером доминантного гена, локализованного в Х-хромосоме человека,

    может послужить ген, вызывающий дефект зубов, приводящий к потемнению эмали

    зубов.

    Так как гетерогаметный пол гемизиготен по сцепленным с полом генам, то эти

    гены всегда проявляются в их фенотипе, даже если они рецессивны. Большинство

    генов, имеющихся в Х-хромосоме, в Y-хромосоме отсутствует, однако

    определенную генетическую информацию она все-таки несет. Различают два типа

    такой информации: во-первых, содержащуюся в генах, присутствующих только в Y-

    хромосоме, и, во-вторых, в генах, присутствующих как в Y-, так и в Х-

    хромосоме (гемфрагический диатез).

    Y-хромосома передается от отца всем его сыновьям, и только им. Следовательно,

    для генов, содержащихся только в Y-хромосоме, характерно голандрическое

    наследование, т.е они передаются от отца к сыну и проявляются у мужского

    пола.

    У человека в Y-хромосоме содержатся по крайней мере три гена, один из

    которых необходим для дифференциации семенников, второй требуется для

    проявления антигена гистосовместимости, а третий оказывает влияние на размер

    зубов. Y-хромосома имеет немного признаков, среди которых есть

    патологические. Патологические признаки наследуются по параллельной схеме

    наследования (100%-ое проявление по мужской линии). К ним относят:

    1) облысение;

    2) гипертрихоз (оволосенение козелка ушной раковины в зрелом возрасте);

    3) наличие перепонок на нижних конечностях;

    4) ихтиоз (чешуйчатость и пятнистое утолщение кожи).

    Основные положения хромосомной теории наследственности.

    Хромосомная теория наследственности, теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, т.е. преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Х. т. н. возникла в начале 20 в. на основе клеточной теории и использования для изучения наследственных свойств организмов гибридологического анализа.

    В 1902 У. Сеттон в США, обративший внимание на параллелизм в поведении хромосом и менделевских т. н. "наследственных факторов", и Т. Бовери в Германии выдвинули хромосомную гипотезу наследственности, согласно которой менделевские наследственные факторы (название впоследствии генами) локализованы в хромосомах. Первые подтверждения этой гипотезы были получены при изучении генетического механизма определения пола у животных, когда было выяснено, что в основе этого механизма лежит распределение половых хромосом среди потомков. Дальнейшее обоснование Х. т. н. принадлежит американскому генетику Т. Х. Моргану, который заметил, что передача некоторых генов (например, гена, обусловливающего белоглазие у самок дрозофилы при скрещивании с красноглазыми самцами) связана с передачей половой Х-хромосомы, т. е. что наследуются признаки, сцепленные с полом (у человека известно несколько десятков таких признаков, в том числе некоторые наследственные дефекты — дальтонизм, гемофилия и др.).

    Доказательство Х. т. н. было получено в 1913 американским генетиком К. Бриджесом, открывшим нерасхождение хромосом в процессе мейоза у самок дрозофилы и отметившим, что нарушение в распределении половых хромосом сопровождается изменениями в наследовании признаков, сцепленных с полом.

    С развитием Х. т. н. было установлено, что гены, расположенные в одной хромосоме, составляют одну группу сцепления и должны наследоваться совместно; число групп сцепления равно числу пар хромосом, постоянному для каждого вида организмов; признаки, зависящие от сцепленных генов, также наследуются совместно. Вследствие этого закон независимого комбинирования признаков должен иметь ограниченное применение; независимо должны наследоваться признаки, гены которых расположены в разных (негомологичных) хромосомах. Явление неполного сцепления генов (когда наряду с родительскими сочетаниями признаков в потомстве от скрещиваний обнаруживаются и новые, рекомбинантные, их сочетания) было подробно исследовано Морганом и его сотрудниками (А. Г. Стёртевантом и др.) и послужило обоснованием линейного расположения генов в хромосомах. Морган предположил, что сцепленные гены гомологичных хромосом, находящиеся у родителей в сочетаниях  и , в мейозе у гетерозиготной формы ® могут меняться местами, в результате чего наряду с гаметами АВ и ab образуются гаметы Ab и аВ. Подобные перекомбинации происходят благодаря разрывам гомологичных хромосом на участке между генами  и последующему соединению разорванных концов в новом сочетании: Реальность этого процесса, названного перекрестом хромосом, или кроссинговером, была доказана в 1933 нем, учёным К. Штерномв опытах с дрозофилой и американскими учёными Х. Крейтономи Б. Мак-Клинток — с кукурузой. Чем дальше друг от друга расположены сцепленные гены, тем больше вероятность кроссинговера между ними. Зависимость частоты кроссинговера от расстояний между сцепленными генами была использована для построения генетических карт хромосом. В 30-х гг. 20 в. Ф. Добржанский показал, что порядок размещения генов на генетических и цитологических картах хромосом совпадает.

    Согласно представлениям школы Моргана, гены являются дискретными и далее неделимыми носителями наследственной информации. Однако открытие в 1925 советскими учёными Г. А. Надсоном и Г. С. Филипповым, а в 1927 американским учёным Г. Мёллером влияния рентгеновских лучей на возникновение наследственных изменений (мутаций) у дрозофилы, а также применение рентгеновских лучей для ускорения мутационного процесса у дрозофилы позволили советским учёным А. С. Серебровскому, Н. П. Дубинину и др. сформулировать в 1928—30 представления о делимости гена на более мелкие единицы, расположенные в линейной последовательности и способные к мутационным изменениям. В 1957 эти представления были доказаны работой американского учёного С. Бензера с бактериофагом Т4. Использование рентгеновских лучей для стимулирования хромосомных перестроек позволило Н. П. Дубинину и Б. Н. Сидорову обнаружить в 1934 эффект положения гена (открытый в 1925 Стёртевантом), т. е. зависимость проявления гена от места расположения его на хромосоме. Возникло представление о единстве дискретности и непрерывности в строении хромосомы.

    Х. т. н. развивается в направлении углубления знаний об универсальных носителях наследственной информации — молекулах дезоксирибонуклеиновой кислоты (ДНК). Установлено, что непрерывная последовательность пуриновых и пиримидиновых оснований вдоль цепи ДНК образует гены, межгенные интервалы, знаки начала и конца считывания информации в пределах гена; определяет наследственный характер синтеза специфических белков клетки и, следовательно, наследственный характер обмена веществ. ДНК составляет материальную основу группы сцепления у бактерий и многих вирусов (у некоторых вирусов носителем наследственной информации является рибонуклеиновая кислота); молекулы ДНК, входящие в состав митохондрий, пластид и др. органоидов клетки, служат материальными носителями цитоплазматической наследственности.

    Х. т. н., объясняя закономерности наследования признаков у животных и растительных организмов, играет важную роль в с.-х. науке и практике. Она вооружает селекционеров методами выведения пород животных и сортов растений с заданными свойствами. Некоторые положения Х. т. н. позволяют более рационально вести с.-х. производство. Так, явление сцепленного с полом наследования ряда признаков у с.-х. животных позволило до изобретения методов искусственного регулирования пола у тутового шелкопряда выбраковывать коконы менее продуктивного пола, до разработки способа разделения цыплят по полу исследованием клоаки — отбраковывать петушков и т.п. Важнейшее значение для повышения урожайности многих с.-х. культур имеет использование полиплоидии. На знании закономерностей хромосомных перестроек основывается изучение наследственных заболеваний человека.

    Закономерности, открытые школой Моргана, а затем подтвержденные н углубленные на многочисленных объектах, известны под общим назва­нием хромосомной теории наследственности. Основные положения ее следующие.

    1.  Гены находятся в хромосомах; каждая хромосома представляет со­бой группу сцепления генов; число групп сцепления у каждого вида рав­но числу пар хромосом.

    2.   Каждый ген в хромосоме занимает определенное место (локус); гены в хромосомах расположены линейно.

    3.   Между гомологичными хромосомами происходит обмен аллельными генами.

    4.   Расстояние между генами (локусами) в хромосоме пропорциональ­но числу кроссинговера между ними.