Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекции_Общая геохимия

.pdf
Скачиваний:
426
Добавлен:
10.06.2015
Размер:
7.19 Mб
Скачать

градов считают, что мантия имеет существенно иной химический состав, отвечающий перидотитовой магме, в то время как некоторые американские исследователи, например Дж. Кеннеди, защищают чисто фазовый переход на поверхности Мохо. Так, Дж. Кеннеди предполагает, что с изменением температуры изменяется минеральный состав пород при сохранении его исходного химического состава, т. е. с глубиной при одновременном росте давления происходит превращение базальта в эклогит. В породе появляются минеральные новообразования — омфацит, пироп-альмандин и др, отличающиеся более плотной упаковкой, что приводит к увеличению плотности породы.

Зона В (см. рис. 3.2) простирается от поверхности Мохо на 400 км в глубь Земли и сопровождается несколько более детальной картиной изменения скоростей прохождения сейсмических волн и соответствующего изменения плотности пород от 0 до 400 км глубины (по В. В. Белоусову). Обращает на себя внимание явное уменьшение плотности, а также скорости прохождения волн на глубине около 200 км.

Рис. 3.4. Диаграмма перехода базальт – эклогит (по Г. Иодеру и К. Тили)

Согласно представлениям А. Е. Рингвуда, этот эффект связан с существованием так на-

зываемого волновода — слоя варьирующей мощности, простирающегося от 100 до 200 км под материками и от 50 до 400 км под океанами.

На этих глубинах температура достигает критических значений (около 1200° С), при кото-

рых может плавиться базальт (см. рис. 3.4), по мнению большинства исследователей, именно выплавление базальта из пиролита (пироксен + оливин — предполагаемый состав гипотетической породы мантии) приводит к массовому равномерно рассеянному частичному плавлению этой исходной породы, слагающей зону В, вызывающему столь резкое изменение физических свойств субстрата. Предполагается, что пиролит способен генерировать (выплавить) до 25% базальта, подымающегося затем в виде астенолитов кверху.

Зона С (см. рис. 3.2) охватывает почти 600-километровую толщу Земли (до 400 до 1000 км глубины). Она носит название переходной, или слоя Голицына. На протяжении этой зоны происходит заметная перестройка состава мантии: заметно возрастает плотность пород, скорость прохождения волн увеличи-

31

вается до максимальных значений. В средних частях этой зоны зарождаются глубокофокусные землетрясения (700 км).

Предполагается, что в этой области происходят коренные изменения пород, появляются новые минералы с плотнейшей упаковкой. Так, например, А. Е. Рингвуд считает, что в пределах слоя Голицына происходит следующее изменение состава:

2Mg Si03 → Mg2 Si04 + Si02 (стишовит),

Mg2 Si04 → Mg2 Si04 (шпинелевидная структура оливина), Mg2Si04 + Si02 →2Mg Si03 (ильменитовая структура пироксена).

Стишовит является сверхплотной (4,35 г/см3) разновидностью кремнезема, кристаллизующейся в структуре рутила, полученной при давлении 145 000 атм и 1400° С. Шпинелевидная структура оливина и ильменитовая структура пироксена также являются индикаторами специфических условий кристаллизации минералов при высоких давлениях.

Зона D (см. рис. 3.2) является последней зоной мантии. Она простирается до глубины 2900 км. Для этой зоны характерно медленное нарастание всестороннего давления. Однако существенного изменения минерального состава в толще этой зоны, по-видимому, не происходит. С этим связано не-

значительное увеличение скорости прохождения волн и плотности вещества.

В зоне Е, простирающейся на глубину от 2900 до 4980 км, резко изменяется состав и состояние вещества по сравнению с зоной D.

Резко сокращается скорость прохождения продольных волн, фактически полностью прекращается прохождение поперечных волн. Объяснение этому явле-

нию может быть лишь одно: эта периферическая зона ядра Земли сложена вязким веществом.

Зона F в отличие от предыдущей характеризуется небольшим увеличением плотности вещества и скорости прохождения продольных волн. Однако максимальной величины скорость прохождения волн (как в зоне D) уже не достигает.

Существуют различные мнения о строении вещества в ядре Земли. Так, например, предполагают, что плотность и другие его свойства определяются строением атомов (наличием или отсутствием сильно сжатых электронных оболочек). Существует мнение о металлизованном характере вещества в ядре Земли и т. д. Однако вероятнее всего предположение о железо-никелевом со-

ставе ядра Земли.

А. П. Виноградов (1972 г.) обратил внимание на постоянное присутствие в составе железных метеоритов 12 рассеянных элементов, встречавшихся повсеместно, хотя известно около 70 элементов, способных давать сплавы с железом. Расчеты А. П. Виноградова показали, что те химические элементы, для которых парциальное давление кислорода в обратимом равновесии металла с его окисью при температуре плавления железа (1803° К) ниже, чем в системе Fe — FeO, окисляются до окисей в этих условиях и поэтому не могут растворяться (в форме окисей) в Fe — Ni расплаве, тогда как химические элементы, которые

32

окисляются при более высоком давлении кислорода, остаются металлами и всегда присутствуют в метеоритном железе (Ga, Sn, Ge, Ni, Sb, Co, Cu, Pt и др.).

Поскольку предполагают, что состав железных метеоритов отражает состав ядер некогда разрушившихся планет, вывод А. П. Виноградова о выплавлении ядра Земли при сравнительно ничтожной концентрации кислорода (Ро2<. 10-9 атм) представляется весьма вероятным (табл. 3.1).

Таблица 3.1 Парциальное давление кислорода в обратимом равновесии металлов с их окислами при температуре плавления железа (по А. П. Виноградову)

Система

Po2, атм

Система

Po2 , атм

 

 

 

 

Nb—Nb02

6,3-10-31

Fe—FeO

4,0-10-9

U—UO2

1,2-10-24

Ga—Ga203

n-10-9

Al— А1203

5,0-10-22

Sn—Sn02

7,0-10-7

Ti-Ti02

7,9-10-19

Ge—GeO,

2,0-10-7

Мn—МnО

4.0.10-15

Ni—NiO

2,0-10-5

Cr-Cr203

1,0-10-13

Sb—Sb203

1,3-10-5

Zn—ZnO

3,2-10-12

Co—CoO

6,3-10-4

W—WO2

l.0-10-11

Cu—Cu20

2,0-10-4

Mo—MoO2

7,4- 10-9

Pt, Pd, Ir, Au

>1.10-3

3.2.Происхождение земных оболочек

Впоследние три десятилетия прошлого века астрофизики и космохимики поддерживают гипотезу о формировании Земли из холодного протооблака путем агломерации частиц и последующего частичного расплавления, сопровождавшегося дифференциацией вещества Земли.

Впервые подобные взгляды высказал в 40-х годах О. Ю. Шмидт. Он, в частности, одним из первых рассчитал возраст Земли, исходя из числа метеоритов, ежегодно поступающих на Землю, приняв во внимание те вероятные сроки, которые были бы необходимы для образования планеты, равной Земле. Полученная цифра (7,6 млрд. лет) лишь в полтора раза превысила ныне установленный возраст Земли. Для расчета была использована формула:

At

1

lg

 

 

1

lg 3

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

3Amt

 

2

3 6

где А — константа; t — возраст Земли; ∆ — масса метеоритного вещества, падающего на Землю за год; mt — масса современной Земли.

Таким образом, гипотеза о холодном протовеществе Земли получила частичное подтверждение.

Ключевым вопросом, определяющим направленность эволюции протопланетного вещества Земли, является вопрос о природе ее оболочечного строения. При этом необходимо в первую очередь решить, являются ли оболочки производными физико-химических процессов, возникающих в недрах однородно-

33

конденсированного холодного пылегазового материала, или же основы зонального строения были заключены при первичном формировании планеты?

В первом случае при однородной консолидации, вследствие равномерного распределения по всему объему планеты радиоактивных элементов (урана, тория, калия, а также некоторых недолговечных изотопов с меньшим периодом полураспада), неизбежно произошел бы равномерный разогрев всей планеты. С учетом низкой теплопроводности силикатных пород охлаждение недр путем нормальной диссипации тепла происходило бы крайне медленно, главным образом за счет охлаждения самых верхних слоев. Если же учесть, что генерация тепла осуществлялась не только за счет энергии сжатия протовещества вращающейся планеты и энергии, возникшей при этом дифференциации, в результате сильного приливного воздействия близкой Луны, а также начавшихся процессов физико-химических реакций, то общий баланс тепла был бы существенно положителен (табл. 3.2). Отсюда неизбежен значительный разогрев планеты с переходом протовещества в пластичное состояние, лишенное отмеченных выше особенностей оболочечной дифференциации и, в частности, твердой нижней мантии.

 

 

Таблица 3.2

Баланс тепла на Земле (по Орлёнку, 1980)

 

Источник тепла

Q

 

 

кал

эрг

Радиоактивный разогрев

 

 

(только долгоживущие изотопы)

1,4 – 4,5 1030

0,6 – 1,2 1038

Гравитационная дифференциация

6-20 1031

1,5 – 5 1038

Сжатие Земли

3 1031

1,2 1039

Физико-химические реакции

4 1030

1,7 1037

Приливное трение

0,9 1030

0,36 1038

Всего

9 1031

3,4 1039

Во-вторых, потребовался бы длительный, порядка миллиарда лет, интервал времени для разогрева недр до температур, необходимых для осуществления физико-химических реакций и механизма дифференциации протовещества на геосферы (Любимова, 1968). Это, в свою очередь, противоречит данным о возрасте древнейшей земной и лунной коры равном 4,5-4,7 млрд. лет (Ботт, 1974) и указывает на ее образование сразу же после формирования планетных тел.

В-третьих, нет никаких оснований полагать, что формирование Земли происходило из однородного газопылевого облака. Вполне вероятно наличие первичного ядра конденсации в виде конгломерата крупных астероидов, имевших к тому же большую, чем окружающие частицы, плотность. Приведенные соображения свидетельствуют в пользу принятия второй гипотезы, а именно – прообраз современного оболочечного строения Земли в основных чертах был заложен в самом первоначальном механизме формирования планеты. Согласно В. Руднику и Э. Соботовичу (1973), впервые предложившим зональную гипотезу аккреции протовещества, «центром» конденсации Земли служили крупные

34

реликтовые фрагменты типа железных (а, возможно, каменных и даже ледяных) астероидов, практически не содержащих радиоактивности. По мере расходования крупных реликтовых тел уменьшался вызываемый ими общий термальный эффект на поверхности растущей Земли и над возникшем расплавом (пластичное ядро) образовалась термоизоляционная покрышка (нижняя мантия). Таким образом были сформированы протогеосферы Земли – твердое внутреннее ядро и твердая холодная мантия, между которыми, как в термосе, сохранился расплав.

Существуют и другие модели. В модели В. Рудника и Э. Соботовича природу слоя Гутенберга, характеризующегося, пониженной вязкостью, можно объяснить как зону вторичного разогрева и аккумуляции радиогенного тепла, вследствие концентрации здесь основной массы радиоактивных, в том числе короткоживущих изотопов 10Ве, 26Аl, 36Cl, 227Np и др. с периодом полураспада 106 – 108 лет (Войткевич, 1973). Следовательно, эти изотопы в первые же десятки миллионов лет после образования планетного тела способствовали быстрому разогреву и первоначальному поддержанию тепла в областях внешнего ядра и зарождающейся астеносферы. Изотопы 238U, 232Th и 40K, имеющие период полураспада соответственно 4, 5; 13,9 и 1,3 109 лет, основное тепло дали в первый миллиард лет после образования планеты; в последующем их вклад должен был уменьшаться.

На основании детального изучения данного вопроса В.В. Орленок (1980) (http://tululu.ru/sam/doc/23143/) к важному выводу, а именно – астеносфера есть зона накопления глубинного тепла Земли. Последующая разгрузка его осуществляется посредством тепломассопереноса сквозь твердую литосферу. При этом диссипация тепла – тепловое дыхание планеты – осуществляется двумя способами – посредством нормальной теплопроводности со средней скоростью 1,2 кал/см2 с и через глубинные разломы и вулканические аппараты.

3.3. Строение океанической коры

Мощность океанической коры меньше, чем континентальной. Об этом говорит возрастающее ускорение силы тяжести над океанами, позволяющее судить о сравнительно высоком положении поверхности Мохо и соответственно о малой мощности сиалической оболочки (5-6 км).

Исследования, проведенные на судне экспедиции «Гломар Челленджер» (1969 г.), оборудованном установкой для разбуривания дна океана на больших глубинах, показали, что на дне Атлантического и Тихого океанов нет осадков древнее верхней юры. Из 30 скважин, пройденных с целью пересечения осадочного чехла, покрывающего базальтовое основание дна, четыре скважины достигли базальта. В остальных случаях они пересекли осадки мелового возраста, лишь в одном достигнув титонского яруса. Ни в одной из скважин не было выявлено более древних отложений.

При геофизическом исследовании дна океана были установлены так называемые зебровые структуры — параллельно вытянутые магнитные аномалии, следующие в субмеридиональном направлении. Эти серии аномалий повторяли

35

все изгибы, характерные для главной рифтовой долины5, подобно швам, рассекавшим Тихий, Атлантический и Индийский океаны и соединенных на юге опоясывающей Антарктиду зоной (рис. 3.5).

При детальном исследовании магнитные аномалии этой зебровой структуры оказались структурными швами, залеченными базальтовыми излияниями, строго повторяющими контуры береговых линий континентов.

Рис. 3.5. Главные тектонические структуры Земли (по А.С. Монину)

1-докембрийские платформы, 2-щиты, 3- древние ядра платформ, 4-первичные дуги, 5- срединно-океанические хребты, 6-рифтовые долины (зоны растяжения), 7-поперечные разломы, 8-глубоководные желоба.

Абсолютный возраст этих базальтов симметрично возрастал по мере удаления от центральной рифтовой до-

лины в стороны и достигал 120 млн. лет. Более древние породы не найдены. Возраст пород в районе самой рифтовой долины оказался близким к современному -5 млн. лет.

В настоящее время рифтовые зоны Индийского и Атлантического океанов изучены достаточно хорошо. Большой вклад сделали советские ученые во время экспедиции на судне «И. В. Курчатов», проследив подобные структуры в Индийском океане на протяжении почти 1000 км. Сплошное драгирование рифтовых долин на дне океана, имеющих глубину по сравнению с уровнем дна 3-4 км при такой же ширине и огромном протяжении по простиранию, дало ценные результаты. Большая часть материала, поднятого с глубин, оказалась породами ультраосновного и основного состава — гарцбургитами6, лерцолита-

5Существует несколько основных причин, по которым рифтовые озера, в частности озеро Танганьика стало вторым по глубине и крупнейшим по площади пресноводным озером в мире (после озера Байкал в Сибири). Главная из них заключается в том, что озеро находится в зоне тектонических разломов. Озеро расположено в Западной части долины разломов, известной как Великая рифтовая долина и включающей в себя также Восточ- но-Африканскую рифтовую долину, и ограничено гористыми склонами тектонических разломов.

6Гарцбургит — глубинная ультраосновная горная порода нормального ряда. Является одним из типов перидотита. Сложена оливином и ортопироксеном (ромбическим пироксеном)

36

ми 7либо базальтами. Отдельные обломки отличались высоким содержанием шпинели, хромитов.

При исследовании таких зон в Атлантике (1969 г.) установлено развитие среди них подводного вулканизма, сопровождавшегося значительным

обогащением придонных вод и окружающих пород фтором, медью, свинцом и другими элементами (до 0,1 %). Стало очевидным, что океаническое дно представляет собой не только особый, в значительной степени утонченный тип земной коры, но что, кроме этого, эта кора местами раскрывается, обнажая таящиеся под ней породы явно мантийного происхождения. И, что самое главное, началось это раскрытие сравнительно недавно -120 млн. лет назад, в мезозое.

В 20-х годах прошлого столетия большой популярностью пользовалась концепция А. Вегенера, рассматривавшего континенты как сиалические айсберги, плавающие на поверхности мафических пород мантии. Доказательства, приведенные Вегенером, легко убедили его современников. Довольно точное совпадение контуров Южной Америки и Африки, прослеживание мезозойских пород с американского континента на африканский и далее в Индию и Австралию, казалось служили бесспорным доказательством того, что материки эти составляли в недавнем прошлом единое целое.

Однако этой гипотезе, вошедшей в геологические науки под названием «мобилизм», не удалось просуществовать достаточно долго.

Другая школа — «фиксистов» — приводила не менее веские доказательства того, что, например, очаги современных вулканических поясов лежат на больших глубинах, за пределами земной коры, что глубокофокусные землетрясения, сопровождающиеся извержениями вулканов, зарождаются на глубинах 600—700 км, и, следовательно, так просто континенты «переместить» не удастся.

Тем не менее идее движения континентов суждено было вновь появиться на свет под названием гипотезы «неомобилистов».

Со временем были получены данные, подтверждающие движение континентов, например, было доказано, что Калифорнийский полуостров перемещается со скоростью 1 мм/год в западном направлении от североамериканского континента, что Северная Америка отходит от Европы со скоростью 1 см/год; было установлено разрастание Красного моря и т. д. По данным Э. Булларда, скорость разрастания Тихого океана достигает 16 см/год, т. е. весь бассейн Тихого океана должен был бы возникнуть за 100 млн. лет.

Исследования, в частности геохронологические, атлантического побережья Южной Америки и Африки показали поразительное сходство структур этих континентов, а многие из них служили продолжением друг друга. Оказа-

7 Лерцолит - магматическая интрузивная порода ультраосновного состава нормального ряда из семейства перидотитов, сложенная оливином (40-80%), орто- и клинопироксеном (по 1050%) с примесью роговой обманки (до 5 %).Разновидности: лерцолит плагиоклазовый (до 10% плагиоклаза), гранатовый (> 5%) граната).

37

лось, что если повернуть Южную Америку на 15° против часовой стрелки, то очертания ее шельфа достаточно точно совпадут с границей шельфа Африки.

Простое перечисление структур Южной Америки и Африки позволяет говорить об их былом единстве и внезапном разрыве, происшедшем

сравнительно недавно (по-видимому, в мезозое). Так, Гвианский щит, датируемый 300 млн. лет, имеет продолжение в Африке в виде Гвинейского щита. Карирский ороген, датируемый 600 млн. лет, охватывающий восточный выступ Южной Америки, является синхронной структурой панрифейской геосинклинали Африки, к которой относится Нигерия и Северный Камерун. При этом в ядре этой геосинклинали развиваются два относительно юных разлома: Нигерийский — меридионального простирания и Фамбел (Камерун) — северовосточного простирания, с которыми связаны молодые граниты (160 млн. лет). Точно такие же структуры в виде двух зон — Пернамбуко и Патос — известны в Карирском орогене.

И с учетом поворота Южной Америки на 15° они действительно вытягиваются в один гигантский разлом Пернамбуко — Фамбел.

Не менее интересны другие случаи совпадения структур древних масси- вов-Сан-Франциско в Южной Америке и Габона и Конго в Африке, обоюдно прерываемых на юге мощным развитием молодого магматизма около 600 млн. лет назад в районе Рио-де-Жанейро и Анголы. Общий характер магматизма подтверждается и тем, что вдоль зон субширотного простирания по обеим сторонам Атлантического океана развиты карбонатитовые месторождения. И так, подобие континентов установлено. В чем причина разрыва единого некогда материка?

Этой проблеме было посвящено специальное совещание «Дрейф континентов», состоявшееся в Монтевидео в 1967 г. В частности, интересные данные были приведены палеомагнитологами, измерявшими по намагниченности образцов пород положение магнитного полюса в эпоху образования этих пород. По их данным, в показаниях подобного индикатора имели место существенные «противоречия». Все результаты измерений, проведенных в Южной Америке, свидетельствуют о миграции Южного магнитного полюса от экваториальной зоны Атлантического океана к югу по оси океана к современному положению полюса. В то же время, по данным исследований Африканского континента, подобная миграция Южного магнитного полюса должна была происходить параллельно с американским вариантом от экватора через центральную часть Африки на юг. В меловой

период положения полюса вблизи берегов Антарктиды совпадали как по американским, так и по африканским данным.

Нетрудно догадаться, что для примирения обеих точек зрения достаточно было «сдвинуть» оба континента.

Итак, мы выяснили, что современный океан имеет сравнительно «юный» возраст — около 120 млн. лет, что до самого последнего времени в его фундаменте происходили крупные деформации, указывающие на тенденцию к его расширению, сопровождавшиеся расколами и внедрением магматических пород мантии.

38

Эта тенденция характерна для развития любого океана земного шара, как об этом свидетельствуют приведенные выше факты. Следовательно,

говорить о миграции материков бессмысленно. Материк структурно прикован к определенным участкам планеты, поэтому неподвижен.

В связи с подробным изучением океанического дна и полученными геофизическими данными некоторые зарубежные исследователи (Э. Буллард, Г. Менард и др.) выступили с гипотезой о пяти8 жестких плитах мощностью около 100 км, захватывающих, следовательно, часть мантии и сложенных оливином, пироксеном, гранатом и другими минералами. Эти плиты, по мнению авторов гипотезы, могут нести на себе участки земной коры и способны погружаться под надвигающуюся на них другую плиту (рис. 3.6.).

Рис. 3.6. Схема столкновения континентов.

Этим, например, объясняется строение западного берега Южной Америки, где под перемещающийся в западном направлении континент происходит «подныривание» океанической плиты

Тихого океана, опускающейся под углом 45° в астеносферу. С этим же связано перемещение Индийской плиты на север и смятие континентальной толщи Гималаев.

Столкновение континентальных плит приводит к смятию коры и образованию горных цепей. Примером коллизии является Альпийско-Гималайский горный пояс, образовавшийся в результате закрытия океана Тетис и столкновения с Евразийской плитой Индостана и Африки. В результате мощность коры значительно увеличивается, под Гималаями она составляет 70 км. Это неустойчивая структура, она интенсивно разрушается поверхностной и тектонической эрозией. В коре с резко увеличенной мощностью идёт выплавка гранитов из метаморфизованных осадочных и магматических пород. Так образовались крупнейшие батолиты, напр., Ангаро-Витимский и Зерендинский.

Изложенная точка зрения, не менее фантастичная, чем предыдущая, однако не устраняет главного противоречия о происходящем разрастании океанов и увеличении за счет этого земной поверхности. Очевидно, всe это ведет к выводу о неизменно прогрессирующем во времени увеличении объема земного шара, росте земного радиуса.

Рассматривая строение земных оболочек, мы обращали внимание на то, что вещество земной мантии, не говоря уже о ядре Земли, находится в состоянии интенсивного сжатия, отражающегося на минеральном составе вещества.

8 Более 90 % поверхности Земли в современную эпоху покрыто 8 крупнейшими литосферными плитами: Австралийская; Антарктическая; Африканская; Евразийская; Индостанская; Тихоокеанская; Северо-Американская; Южно-Американская плиты.

39

Во всех случаях внедрения этого вещества в верхние слои земной коры, в особенности при его взаимодействии с гидросферой и атмосферой, т. е. после окончания процессов гипергенеза, результат бывает один — интенсивное разбухание новообразований, уменьшение их плотности.

Если при этом учесть мнение некоторых ученых об особом металлизованном строении вещества ядра, то станет очевидным процесс медленного, но исключительно ориентированного направленного расширения Земли за счет пополнения ее коры глубинным материалом и его перерождения, уменьшения плотности. При допущении такого геохимического механизма роста объема земного шара за счет понижения плотности части его первичного субстрата многие затруднения в проблеме перемещения различных блоков земной поверхности были бы сняты.

Е. А. Любимова отмечает также вероятность теплового расширения недр Земли под воздействием миграции радиоактивных калия и U285, допуская увеличение земного радиуса на 100 км в первые миллиарды летжизни Земли (что соответствует 600 км ее окружности). Современная скорость изменения радиуса Земли составляет 3,5 см за 1000 лет.

Вросте объема земного шара, увеличении его поверхности, вероятно, заключается причина растущей его асимметрии — возникновения огромных чаш океанов, до того занимавших значительную часть континентов.

3.4.Энергетические ресурсы Земли

В1903 г, П. Кюри и Л. Лаборд обнаружили непрерывное, происходящее вместе с радиоактивным распадом атома, тепловое лучеиспускание, пропорциональное числу распадающихся атомов и времени распада. В том же году Д. Джоли на основании этого открытия показал, что радиогенного тепла, генерируемого радиоактивными элементами, вполне достаточно для образования магм, объяснения вулканической и тектонической деятельности Земли.

Все это подорвало гипотезу о постепенном охлаждении Земли в связи с истощением запасов ее энергии, создаваемых гипотетическим певично расплавленным жидким состоянием вещества в ее глубинных зонах.

В1906 г. Р. Стретт (Рэлей), исходя из интенсивности теплоизлучения, генерируемого радиоактивными изотопами, рассчитал, что в зависимости от глубины происходит уменьшение количества радиоактивных элементов в Земле, так как любое допущение об их распространенности во всей планете, идентичной распространенности в породах земной коры, привело бы к генерации гигантских количеств тепла и испарению земного вещества. Таким образом, резкое уменьшение концентрации радиоактивных элементов в породах с глубиной было предсказано задолго до получения фактических аналитических данных, полностью подтвердивших эту идею.

Количество тепла, генерируемого каждым радиоактивным элементом в настоящий момент (имеются в виду главные теплоизлучатели), приведено в табл. 3.3.

40